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Abstract
Using the Malliavin Calculus, this paper proves the existence of a weak function-solution
of class C* of the Landau equation for a generalization of Maxwellian molecules when the
initial data is a probability measure.
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1 Introduction

The Landau equation, also called the Fokker-Planck-Landau equation, is obtained as limit of
the Boltzmann equation when all the collisions become grazing. Its expression, in the spatially
homogeneous case, is:

%(”’t)%i 5o { [ s 0=o) i ghwn - reo gl @} o
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where f (v,t) > 0 is the density of particles with velocity v € R? at time t € R, and (a;; (#)1<ij<a
is a nonnegative symmetric matrix depending on the interaction between the particles.

In this paper, we study the Landau equation for a generalization of Maxwell gas. We consider
a matrix a of the form

aij (2) = b (1217) (1217 6 — 212 (2)
where h is a positive continuous function on R, such that there exist m, M > 0 with Vz € R¢
mgh(\z|2> <M (3)

When h is a constant, we recognize the coefficient of the Landau equation for Maxwellian molecules.
We define the vector b by

d
bi(2) = Z djaij (2)

—(d=1)h(|zf) = (4)

Then, by integration by parts, we can give a weak formulation of the equation (1), and conse-
quently we define the notion of weak function-solution:
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Definition 1 Let f (.,0) be a nonnegative function on R? with finite mass and energy. A nonneg-
ative function f on R? x RT is a weak function-solution of the Landau equation with initial data
I (,0), if f satisfies the following equation for any test function ¢ € C? (Rd,R)

d

d
G [ewnd = 330 [ v fe ) 0t o (0= 0 0 (1) + 0o (02)

ij=1

1 d
+§ ; /]Rd xR dvdv f(v,8) f (Ve 1) bi (v = vs) (Oigp (v) — Dip (i) (5)

9 82
where Ojp = a—fi and 0;p = aviafzj :

The equation (5) conserves mass, momentum and energy. Thus, if there exists a weak function-
solution f of (5) with an initial data satisfying [5. f (v,0) dv = 1, the measure P; on R? given by
P, (dv) = f (v,t) dv is a probability measure, for any ¢t > 0. Thus, we define a probabilistic notion
of solutions of the Landau equation :

Definition 2 Let Py be a probability measure on R? with a finite two-order moment (i.e. [pa lv]? Py (dv) <
00). A measure-solution of the Landau equation (6) with initial data Py is a probability flow (P;),~,

on R? satisfying

%/@(v)Pt(dv) = % Zd: /det(dv) (/det (dvy) ai; (”UU*)> dije (v)

ij=1

Jé;/R P, (dv) (/R P, (dv.) b; (v — v*)> dip (v) (6)

for any function p € C? (Rd, R).

This approach allows us to have weaker conditions on the initial data, i.e. we can assume that
the initial data is a probability measure and not necessarily a density of probability.

Remark 3 With an abuse of notation, we will still say that a probability measure P on C ([0, T] ,Rd)
s a measure-solution of the Landau equation when its time-marginals flow is a measure-solution
in the sense of Definition 2.

We have already proved, in [3], the existence of a probability measure-solution of the Landau
equation (6). We are here interested in proving with a stochastic approach the existence of a weak
function-solution of (5) of class C°.

We recall briefly the main results of [3]. We have associated with the Landau equation (6)
a nonlinear stochastic differential equation driven by a space-time white noise. We highlight the
nonlinearity using two probability spaces: let (Q,]—'  (Fo)iso ,]P’) be a filtered probability space

and ([0,1],B([0,1]),da) be an auxiliary probability space, where da is the Lebesgue measure on
[0,1]. In order to avoid any confusion, we will denote by E the expectation and £ the distribution
of a random variable on (2, F,P) and E,, L, for a random variable on ([0, 1], B([0,1]),da).

For k > 2, we define P, the space of continuous adapted processes X = (X;),-, from

(Q,}", (Ft) >0 7]P’) to R?, such that FE [ sup Xt|k] < 0o VT > 0, and Py, the space of con-
= 0<t<T

tinuous processes Y = (V3),, from ([0,1],8([0,1]),da) to R?, such that E, [ sup Ytﬂ < 00
= 0<t<T
vT > 0.



a is a nonnegative symmetric matrix, then there exists a matrix o of order d x d’ such that
a=o0.0" (7)

where o* is the adjoint matrix of o.
We define a d’- dimensional space-time white noise on [0, 1] x [0, 00) by

Wi
we = (8)
W

where the W, are independent space-time white noises with covariance measure dadt on [0, 1] x
[0,00) (according to Walsh’s Definition, [8]).

Let X, be a random vector on R?, independent of W? , with a finite moment of order 2.

We consider the following nonlinear stochastic differential equation:

Definition 4 Let Xo and W% be defined as below. A couple of process (X,Y) on (Q, F, (Ft)iso ,P) X

([0,1],B([0,1]) ,dc) is solution of the nonlinear stochastic differential equation (NSDE(c,b)) if for
anyt >0

X, = X0+// (Xs — Y ( )).Wd'(da,ds)Jr/ot/olb(XsY;(a))dads

and L(X) =L, (Y

We notice, using Ito’s Formula, that the distribution of a solution of (NSDE (o,b)) is a weak
measure-solution of the Landau equation (6) with initial data Py = £ (Xj).

In [3] (Theorem 10), we have proved the following theorem for k£ = 2, but, adapting the proofs,
it is still true for any k > 2.

Theorem 5 Assume that W¢ is a d'-dimensional space-time white noise and assume that Xy
is an independent random vector on R® with finite moment of order k. If the functions o and b,
defined by (7), (2) and (4), are Lipschitz continuous, there exists a couple (X,Y), unique in law,
solution of the nonlinear equation (NSDE (o,b)) with (X,Y) € Py X Piq-

Corollary 6 Assume that Py is a probability measure with a finite moment of order 2. There
ezists a measure-solution (Py),~, with initial data Py to the Landau equation (6) when o and b are
Lipschitz continuous functions.

Corollary 7 Assume that Py is a probability measure with a finite moment of order 2. There is
uniqueness of the measure-solution (P,),~ with initial data Py to the Landau equation (6) when o
and b are Lipschitz continuous functions.

Proof.
e We just have to prove the uniqueness of the solution (QY),-, of the linear Landau equation,
ie. -
d
= | P Qu(dv) = 3 Z Qt (dv) e (dv) aij (v —vs) | Dijep (v)

+Z L) ([ nane=e))oee) O

where (4,);>¢ is a probability flow on R?. In fact, as a measure-solution (Pr);>o to the
(nonlinear) Landau equation is also a solution of the linear equation (9) with p, = P, for
any t > 0, by uniqueness of the measure-solution of (9), (), is uniquely determined.



e The linear Landau equation (9) satisfies the assumptions of [2] Theorem 5.2, then there is
uniqueness of the measure-solution of (9).

Remark 8 We notice that we can choose

in dimension two, and

z9 —Z3 0
o(2)=/h (|z|2) 2 0 oz (11)
0 Al —Z2
in dimension three. Then, if h is a bounded function of class C' with h' (x) = O (£—12) when

x — 400, 0 and b are Lipschitz continuous functions of class C' on R?, for d = 2,3. This property
can be generalized in higher dimension.

The aim of this article is to find a weak function-solution of the Landau equation when the
initial data is a probability measure. To state the existence of a weak function-solution of (5) from
a measure-solution, it is enough to show that the measure-solution is absolutely continuous with
respect the Lebesgue measure. Indeed, if (P;),- is a measure-solution of (6) with initial data Py
and if there exists a nonnegative function f; on R such that P; (dv) = f; (v) dv for any ¢ > 0, then
the function f defined by f (v,t) = f; (v) for any v € R?, ¢ > 0, is a weak function-solution of (5)
with initial data Pj.

The idea consists in using the relation between the Landau equation and the nonlinear differ-
ential equation (NSDE (o,b)). In fact, we develop a Malliavin Calculus for the value X3, ¢t > 0,
of the solution X of (NSDE (o,b)) obtained in Theorem 5, inspired by the methods used by V.
Bally and E. Pardoux in [1] and by D. Nualart in [6].

The Maxwellian case (i.e., when the function h is a constant) is studied in detail with an
analytic approach by C. Villani in [7]. When the initial data is a nonnegative function f; with
finite mass and energy, C. Villani has proved the existence and the uniqueness of a solution of (1)
of class C*°.

We prove here the existence of a weak function-solution of the Landau equation (5) of class C*
when the initial data is a probability measure with finite moments for some bounded functions h.

1.1 About the Malliavin calculus for a white noise

The Malliavin calculus is almost the same for the white noise as for the Brownian Motion. We use
in the following the same notation as D. Nualart, [6]. We just recall the definitions of the main
spaces for the Malliavin calculus.

Let W? be a d’-dimensional space-time white noise.

Let S be the class of random variables F' having the following form

F=f (W (g),. W (gn))
where f is a C* real values function on R™ with partial derivatives having polynomial growth,

g = (gij) 1<i<n is a matrix with components in L% ([0, 1] x [0, 00) , dads), and
1<5<d’

d &S] 1
@ (g;) = i (s,a) W; (da, ds
W (g:) jE_l/O /og”(’ ) W; (dav, ds)



Assuming that (r, z) € [0,00) x [0,1], we define the first order Malliavin derivative Dé F of

F in relation to the [*" white noise W; at point (r, z), with [ € {1,...,d’}, by

7,%)

Dy F =Y 0f (W (1) W (g0)) g (r,2)
=1

We will say that F' is differentiable when all its first derivatives exist.

For k> 1, Ay = ((r1,21) 5 o, (Tk, 2)) With r,, € [0,00) and 2, € [0,1], m = 1,.., k. We define
by iteration the derivatives of order k. Let (I3, ..,1;) be a k-uplet of {1,..,d'}, we denote by

. le—
Dl)\lkv Jk,F _ le pDhe-1 Dll

(Ths28) " (Th—1,2k—1) """ (11,21)

We will say that F' has a derivative of order k when all its derivatives of order k exist.

We denote by D*? the completion of S with respect to the norm
1
! P

k d
1Fll, = [E(FP)+ Y lz_lE(||Dlh--’lmF||§2(Am))

m=111,..,lm

where
2
R N R

with A, = ([0,00) x [0,1))" and A\, = ((71,21) 5 s (Tiny, 2m)) € A
We also denote by D*>° the subspace of the infinitely differentiable variables:

D®=n n DkP
p>1k>1

When F is a random vector in R%, we derive component by component and we denote by DF
the matrix (DF), , = D'F;, 1 <i<d]1<1<d. The Malliavin matrix is defined by

T rl
I= / / Dy oy F. (D) F)" dzdr
0 0

In this paper, under suitable assumptions on ¢ and b and integrability conditions on the initial
data Xy, we show that for any ¢ > 0 the value X; of X obtained in Theorem 5 satisfies the
conditions of one of those two following theorems.

Theorem (a) (see [6] Theorem 2.1.2)

Let F = (F1,..,Fy) be a random vector on (2, F,P) satisfying the following conditions :
(i) F; belongs to the space DYP, p > 1, for any i = 1,..,d.
(i1) The Malliavin matriz I = [~ fol D, F. (D(r,z)F)* dzdr is invertible a.s..
Then the distribution of F' is absolutely continuous with respect the Lebesgue measure on
R,

Theorem (b) (see [6] Corollary 2.1.2)
Let F = (F1,.., Fy) be a random vector on (Q,F,P) satisfying the following conditions :
(1) F; belongs to D*°, for any i =1, ..,d.
(i1) The Malliavin matriz I = [~ fol D, . F. (D(T,Z)F)* dzdr satisfies

(det1)™" e N 1P (Q)
p>1

Then F has an infinitely differentiable density.



1.2 Notations

e C([0,T],R?) is the space of continuous functions from [0, 7] to R¢, and for k € N, C ([0,7],R%)
is the space of functions of class C* with all its derivatives bounded up to order k.

o My (R) is the set of d x d’ matrix on R.

e For k > 2, a random variable Z on (£, F,P) belongs to € L* if Z has a finite moment of
order k, i.e. E {\Z\k} < o0

e K is an arbitrary notation for a positive constant (K can change from line to line).

2 Computation of the derivatives of X

2.1 The first derivative

Assumption (H'): ¢ and b are Lipschitz continuous functions of class C! from R to Mg 4 (R)

and RY respectively.
We denote by K, and K} their Lipschitz constants.

Theorem 9 We assume that Xo has a finite 2-order moment. Let (X,Y) be the solution of the
nonlinear stochastic differential equation (NSDE(c,b)) obtained in theorem 5. (Y will play a
parameter role in the following.)

Under Assumption (H'), Vt € [0,T] Vi = 1,..,d, X;; € D"2. The i component of its
derivative in relation to the I'" white noise at point (r,z) € [0,00) x [0,1] is given by

Dér,z)X’iat = 0Jil (X -Y, ( ))

t 1
+ / / Z Z Om0i (Xs = Ye () D,y X s Wi (dav, ds)

0 k=1m=1

¢ 1 d
+/T/O Z:lambi(Xs_YS(O‘))Dlr,Z)Xm,Sdads

ift >r and Dém)XM =0ift<r.
Proof. We consider the Picard sequence of Po-processes defined by
X7
Xt = X +/ / (XTI =Yy (@) W (da,ds) + / / b(X! — Y, (a))dads (12)

Then, the i*" component writes

t 1 d
nglzxi’ﬁ/ / > oik (XI = Ya (@) Wi (da, ds) // (X? - Y, (a)) dads
070 k=1

According to [3] Theorem 8, the sequence (X™) satisfies

supE{ sup |Xﬁ2} < 00 (13)
n o<rT

toward X.
]L2

and converges for the norm ||U|| =

sup U,
0<t<T




Let T > 0 be arbitrary fixed. Let ¢t € [0,T] and (r, z) € [0,T] x [0, 1] be fixed.
We show firstly by recurrence that for any n > 0 X} is differentiable at point (r,z) in the
Malliavin sense.
Recurrence Hypothesis:
(i) X7\ € DY2 vt € [0,T) Vi=1,..,d.

& 2

(it) sup > F <f0°° I ‘D(r Z)Xt"‘ dzdr) < 00 where
te[0,T)i=1

For n = 0, Recurrence Hypothesis is satisfied.

We assume that it is true at rank n. Since o and b are functions of class C}, according to [6]

proposition 1.2.2, Vi = 1,..,d Vk =1,..,d’, we have

2
n| _ l n
D!, Z)X = Z (Dl Xm)

i=1

o1k (X}~ Yi (a)) € DV
b (X}~ Yi (a)) € D'

As for the Brownian Motion, we can show that derivative and integral commute (see [6]), then
X;L;H € DM vt € [0,T] Vi =1,...,d. Moreover, its derivative at point (r,2) € [0,7] x [0,1] in

relation to the I*" white noise W is given by
Dlrz)Xn+1 = Oll(X 7Y ( ))
1 d
/ / 3 Z@malk — Y, (a)) DYy, X2, Wi (da, ds)
0 k=1m=1

/ / Z&nb (XZ — Ya () D}, ) X7 dods

if r <t and D! X"/1 =0 else.
We still have to check that

sup {/ / ‘Dlm X"H’ dzdr} < oo
t€(0, 7],

Sy = sup [/ /‘DITZX”
tG[OT]l 1

= sup {// ‘Dl,ZX”
t€[0,T)]

According to Recurrence Hypothesis, S,, < oo. Let us study Sy, 41
Let! € {1,..,d'} be arbitrary fixed. We divide in three parts the expectation £ {fo fo ’Du Z)X"“’ dzdr] .

We define
t 1
B, = EU/ |ai,l(X;}Yr(z))|2dzdr}
0 Jo

t 1
2K 2E U / X224 Y, (2)2 dzdr} + o (0)]
o Jo
since o is Lipschitz continuous

2K2T [supE[ sup | X } + E, { sup |YT|2H + T |o (0)]
n 0<r< o<rT

We define

dzdr}

dzdr}

IN

IN



According to (13), we have supy<;<r E1 < oo.
We define

2

/Ot/ol /t/o Zzamm — Y. () D{, .y X7 Wi (da, ds)| dzdr

k=1m=1

(Lol z<m o) o

since Wy, are independent

dZZ// [// Om0ige (X2 — Y, () DLy X0, >dads]dzdr

k=1m=1
using Hélder’s Inequality

E,

IN

Since the partial derivatives of ¢ are bounded by K,

dK2ZZ// [// D, X% dads]dzdr

k=1m=1
]ds

d’ng/EU/’Dg
0 o Jo ’

using Fubini’s Theorem

t s 1
< d/ng/ sup E [/ / ‘Dérz
0 s€[0,T] o Jo ’

< ddK*TS,

Es

IN

| as

Then, by Recurrence Hypothesis, we have supy<; < E2 < oco.
We consider now

2

Es=FE Za bi (X7 =Y, () D, , X7 dods| dzdr

Using the same method as for integral E, we also have supy<,<r E3 < 00.
Finally, we have proved that for any [ € {1,..,d'}

sup E (/ / ‘DW)X”H‘ dzdr> < Co+ 4TS, <

t€[0,T]

with

0<r<

Co = 6dK2T (supE( sup | X )—I—Ea( sup |YT|2)> +3dT |o (0)]
n 0<r<T
Cy = 6d°max (d'K},K;T)

Thus, Recurrence Hypothesis is satisfied for any n > 0.
We notice that we have in fact a stronger result concerning property (ii):

Lemma 10 The sequence of the first derivatives of (X”)nZO satisfies

t 1 2
sup sup ZE (/0 /0 ‘Dlr,z)th

n>0telo, T

dzdr) <C< o



Proof. We have already checked the following estimate

t 1 2 t
E (/ / D x| dzdr) < Co+ 01/ Snds
o Jo 0
= Co+CitS,
Since Sy = 0,
t 1 2
E ( / / ‘ng)xg‘ dzdr) e
o Jo
t rl 2 tn—1
E (/ / ‘Dér,z)X;L dZd’/’) < Co+CoCit+ ...+ C()Cln_l Y
0o Jo (n—1)!
If we define C = d’Cpe“' T, we have
d’ t 1 2
sup sup ZE </ / ‘Dém)Xt” dzdr) <C
n>0t€0,T], = o Jo
]
Finally, we have proved
Vn>0vte(0,T] Vi=1,..,d X', €D"? (14)
d’ t 1 2
sup sup ZE (/ / ‘Dﬁr X dzdr) < 00 (15)
n>0t€[0,7)7 o Jo ’

Since the sequence (X™) converges uniformly on [0, 7] in L? toward X and thanks to (14) and
(15), we deduce that X is differentiable (see [6] lemma 1.2.3). Moreover, the sequence of derivatives
(DX™) converges toward DX for the weak topology on 1.2 ([0, T] x [0,1] x Q). Thus, the theorem
is proved. m

2.2 The upper order derivatives

We state that X belongs to D>° under a stronger assumption on o and b.
Assumption (H*): ¢ and b are Lipschitz continuous functions of class C*° with bounded

derivatives from R? to My 4 (R) and R? respectively.
Notations: Let k > 1. We define A\, = ((r1,21) , ..., (7%, 2x)) and

5\m = ((Th 21) PR (Tmflyszl) s (Tm+1, Zm+1) y ey (Tk, Zk))

with r,,, € [0,¢] and 2z, € [0,1] for m =1,.. k.
Let us now define [ (E) = I.,,...,I., and A(E) = ((re,,2,), .-, (re,, 2,)) for any subspace
E ={eq,...,eq} of {1,...,k}. We consider

d

; I(E I(E,
S (0, 0) = > (ks -+-Oh, 01 5) (X = Ya (@) x DY) X, oo x DYG X,
ki,...,ky=1
d
" UE I(E,
Bl (5:0),0) = D 3" (Oky O, bi) (Xs — Ya (@) x DB Xy o x DY) Xk,
k1,....k,=1

where the first sum is taken on all partitions £y U ...U E, = {1, ..., k}.



We define at last,
5 ((s,0)) = 045 (Xs = Ys (@)
We denote by r1 V... V1, =sup {ry, ..., 7k}

Theorem 11 Assume that Xo € LP, for any p > 1. Under Assumption (H*), Vt > 0 X; € D*.
Moreover, the it" component of one of its derivative of order k at point Ay = ((r1,21) , ..., (T, 21))
is given by the following equation

k

t 1 d
L1l 3 i
D/\lk, kXi>t Z Uiy (L - b — 15l 150 5l1) ((Tm’zm)’)\m) +/ / ZZ;,(llw,lk) ((S’Oé) ’/\k) Wj (da7d8)
r1V..Vrg JO j=1

_/nv . / Bin 1 ((5:0) , Ay) dads (16)

ift>r1V..Vrg and Df\lk’”"l’“XLt =0ift<riV.Vrg.

Remark 12 In expression (16) of the k' derivative, the terms in the first sum with r,, < riV..\Vry,
are equal to 0.

Proof. We use again the Picard sequence (X"), ., defined by (12). For any p > 2, n > 0,
X" € LP and (X") converges uniformly toward X in LP. As o and b satisfy Assumption (H*),
using the same method as in the previous paragraph, we prove that X;* € DY? Vp > 1 for any
t > 0. By recurrence, we prove that V¢t > 0, Vn > 0 X € D°°.

Let us fix T' > 0.

Recurrence Hypothesis (hy,):

@) X7, € D=, Vi€ [0,T],Vi=1,..,d
&

(i) s 3 E(fiomeon

te[0,T] Iy,mlp=1
(#i7) the derivatives of order k have the following expression:

P
plbexp, d)\k) <oo Vp>1,Vk > 1.

k t 1 d
Lol vl nyi 5 n.i
D;k kXivj - Z Elmf(lh A=t bt 1se50k) ((Tm, Zm) v>‘m) +/ / Z Zj,(llw,lk) () Ak) W (dav, ds)
r1V.Vrg JO j=1

/ / ll, s,a0), Ag) dads (17)
r1V..Vrg

ift >ry V.. Vrg and Df\lk’“’l’“X}ft = 0 else, where X" and ("are defined as ¥ and 3 replacing X
with X™".

Hypothesis (hg) is satisfied.

Let us assume that Hypothesis (h,,) is true, and let us study (hp,41). According to Assumption
(H*°) and adapting the computation of the first derivative, it is easy to state that the two first
properties are satisfied. We just check the expression of the k" derivative by recurrence on k.

For k =1, we have

1d’

(T Z)Xn-‘rl — En )i r z / / J (l S Oé) (7“, Z)) Wj (dOé,dS)

+/,.t /01 ﬂ?l)l ((s,a), (1, 2)) dads

then the expression (17) is satisfied.

10



We assume that the expression (17) of the k*" derivative is true, and we now compute the
derivative of order k + 1

k
Iyt U105l v+l _ lpt1 n,i 1
D(Tk+1,zk+1) (D)\lc Xl}t B D(Tk+1yzk+1) Z 2l7n7(l17-~l7n—17lrn+1;4-7lk) (Tims 2m) s Am
m=1
n,i
+Zlk+1,(l1,-.,lk) ((T‘k+1, Zk+1) ) )‘k)

t 1 d
Ik %
- / / STDE e (B (5:0),40)) W5 (da, ds)
V. VreVrge:r J0O j=1

t 1
Ik n,i
+/r /0 D(;:Jlrlvzkﬂ) (/B(ll,.,,lk) ((s,0), Ak)) dads

1V VreVrge

Using some elementary computations, we obtain

k
let1 U, ol v+l _ n,i EN
D(’“k+172k+1) (D)\k Xivt o Z Elmv(l17~vlnz—lylm,+17--7lk>lk+1) (T 2m) s Am
m=1
n,i N
+Elk+1v(l17~7lk) ((Tk"'l’ Zet1) s )\k'H)
1 d

t .
+ / / E E;L,’(le,..,lk’lk+l) ((87 Oé) , )\k+1) WJ (dOé, dS)
r1V.Vregyr JO j=1

t o
+/ / o ((s, ), \x) dads
T1V. VTRt J0 (Trsoslieslio1)

So by recurrence, the property (iii) of (hy41) is proved and consequently for any n > 0 Recurrence
Hypothesis (h,,) is satisfied.
Moreover, as in the computation of the first derivative, we have a stronger property than (iz)

in (hy):
! d)\k>

Lemma 13 If we denote by

d/
Sn,k t FE /
) Z ( ([0,¢]x[0,1])*

l1,.lg=1
M,

li,.lk yn
DM X

sup sup sup Spq(t)
0<q<kn>0t€[0,T]

then for any k > 1
M, < ©

Proof. The proof is similar to the proof of Lemma 10. m

As (X™) converges toward X in IL? uniformly on [0, 7] for any T > 0, the process X satisfies
the conditions of lemma 1.5.4 in [6]. Then, the theorem is proved. m

3 Existence of a weak function-solution of the Landau equa-
tion

Under some suitable conditions on the function h, the Landau coefficients satisfy Assumption (H®)
(see Remark 8). Consequently, if X, belongs to L%, the process X solution of (NSDE (o,b)) is dif-

ferentiable in the Malliavin sense. Let us now study the Malliavin matrix I; = fOT fol Dy Xy (D(T,Z)Xt) * dzdr
for any t > 0 to state the following theorem.

11



Theorem 14 Assume that X is a R*-valued random vector with a finite 2-order moment. Let
o and b be the coefficients of the Landau equation defined respectively by (7), (2) and (4). We
assume that o and b are Lipschitz continuous of class C'. If the distribution of Xy is not a Dirac
mass and if we denote by (X,Y) the solution of the nonlinear stochastic differential equation

t 1 t 1
= (2 — @] . d' 18 S — (6] aas (2
Xt_xo+/0/0 (X, — Y (a) W (d 7d>+/0/0b<xs Y, (a))dads (NSDE (0.b))

then, for any t > 0 the distribution P; of X; is absolutely continuous with respect the Lebesgue
measure.

Corollary 15 Let Py be a probability measure such that [ |z|> Py (dz) < co. Let o and b be the
coefficients of the Landau equation defined respectively by (7), (2) and (4). We assume that o and
b are Lipschitz continuous of class C*. If Py is not a Dirac measure, there exists a unique weak
function-solution of the Landau equation with initial data Py.

Proof. (Corollary 15)

Let Xy be a random vector with distribution Py and X be a solution of (NSDE (o,b)) with
initial data Xg. If we denote by f; the density of the distribution of X;, then, using It6’s Formula,
the function f, defined by f (z,t) = f; (z) for t > 0, is a weak function solution of the Landau
equation (5) with initial data Pp.

The uniqueness is given by Corollary 7. m

Remark 16 Without any restriction, we can assume that E [Xo] = 0 to simplify the computations.

Proof. (Remark 16)
By conservation of momentum, if we define for any ¢ > 0, X; = X; — F [Xj], the expectation
of X’ is equal to 0 and X’ satisfies the following equation

t 1 t 1
X; =X +/ / o (X! —Y!(a)) W? (da, ds) +/ / b(X.,—Y!(a))dads
o Jo o Jo

with Y/ (o) = Ys () — E [Xo].

As L(X) =L, (Y), we also have £ (X') = L, (Y).

If we prove that the distribution of X] has a density f{ with respect the Lebesgue measure,
then X; has a density given by f; (2) = f{ (z — E[Xo]). =

Proof. (Theorem 14)
We recall the expression of the first Malliavin derivative at point (r,z) € [0,00) x [0,1] of X:

Dl Xiz = 001 (Xy —Ye(2))
t 1 d d

[ 30D 00un (X = Vi (@) Dl Xon Wi (der d)
r JO p—1m=1

t p1 d
+ / /0 D Ombi (Xs = Ye () DY, ) Xom,sdads
r m=1

if t > r and Dém)X“ =0 else.
We fix (r, z) € [0,00) x [0, 1] and we define

Sk() = (Omoik())i<imed
B() = (3mbi(-))1gi,m§d

12



Thus we give a matricial expression of the derivative of X

D Xi = o (X, =Y, / /0 S S0 (X, — Vi (@) Doy X Wi (dr )
’ k=1
/ / (X, = Y, (a)) .Dyy.z) Xodads
D(T7Z)Xt 1f t<r

Let us define the semimartingale Z”, for any t > r,

:/:/Olg:Sk(Xs—Ys(oz))Wk(da,ds)—i—/Tt/olB(Xs—Ys(a))dads

As S and B are bounded, (Z;),,. is a continuous semimartingale and the first derivative satisfies
the equation B

t
Dy Xt = 0 (X, — Y, (2)) +/ dZ7 Dy X (18)

Using the results of [4], there is a unique solution of (18) defined almost surely, for any ¢ > r
by
D(r,z)Xt = 5 (Z): .0 (XT — }/r (Z))
with &€ (Z); invertible for any ¢ > 7.

We fix now t > 0.
We want to apply Theorem (a), thus study if the Malliavin matrix I; is invertible a.s..

I, = / ” / 1D(T7Z)Xt.(D(T,Z)Xt)*drdz
= //D(ert (D(r.2)X:)" drdz
- / / 0 (X, — Y, (2)) 0" (X, — Y, (). (£(2)))" drdz

_ /Og(z);“.(/o a(XT—Y}(z))dz>.(€(Z):)*dr

I; is a nonnegative symmetric matrix, then I; is invertible if and only if V*.I;.V > 0 for any
V € RN {0}.
We define T',. —fO a (X, -Y,(2))dz.

We prove the theorem by contradiction.

Assumption : let us suppose that I; is not “invertible a.s.”.

Then, there exists a subset ; C , P (1) > 0, such that Yw € ; I; (w) is not invertible.
Let Q5 be such that P (Q2) =1 and Yw € Qy Vrr < ¢, £ (Z); (w) is invertible.

We define Q¢ = €3 N Qy, and we notice that P () > 0.

We fix w € Q.

As I; (w) is not invertible, there exists a vector V, € R?\ {0} such that

V:It (LL)) Vw

/0 VEE(2) (@) Ty () (E(Z)] ()" Vodr
= 0

13



As for any r < t, £(Z); (w).I'y (w).(E(Z);(w))* is a nonnegative symmetric matrix, we notice
that

V3.E(2)] () Ty (@) (€ (2)](w))". Vi 20

Then, on a subset J,, of full measure in [0,¢], V*.£ (2); (w).I'y (w).(£(2);(w))*.V,, = 0. This
implies that Vr € J,,, £ (2); (w) Iy (w).(£(Z);(w))* is a non invertible matrix. However, since
Qo C Ny, £(Z); (w) is invertible for any < ¢, and consequently I, (w) is not invertible for r € J,,.

Let us now study if the situation “T',. (w) non invertible for almost all r” is possible.

Using Lebesgue’s Theorem, we notice that the mapping » — I',. (w) is continuous. Consequently,
I'; (w) non invertible for almost all r implies that I, (w) is non invertible for any r € [0,¢].

Let V = (Vi), ;<4 be a vector in R?\ {0},

VAL ().V = /0h<\Xr(w)—Yr(z)|2) V1% X, (w) — (Zv w(z))) dz
d 2 d
> m ||V X, (w (Z W> +VIPEIX, [P =Y VPE[X ]+ D ViViE[Xi,X;,]
; i=1 i#£j

using the lower bound (3) of h, E[X;] =0 and £ (X;) = L, (Yz) Vt >0

2
Using Cauchy-Schwarz’s inequality, we notice that [V]* | X, (w)|* — (2?21 ViXir (w)) > 0. Then,

d
VD (). Vem|E|X V=Y VE[X2] - ViV,E[X:, X, (19)
s J s Js
i= i)

[ (w) non invertible means that for any r € [0,¢] there exists V, (w) € R4\ {0} such that

V, (w)" Iy (w) .V, (w) = 0. Nevertheless, using expression (19), this implies that there is equality
in Cauchy-Schwarz, i.e. for any ¢, j such that V;, (w) # 0 and V;, (w) #0

E[Xi,X;,]"=E[X2] E[X2] (20)

VAL

We notice that the equality in Cauchy-Schwarz (20) is in fact satisfied for any i,5 € {1,...,d}.
Indeed, if one of the components of V; (w) is equal to 0, for example Vi , (w) = 0, then

V@) T (@) Vo) = m | B |IX, ]|V, —(ZWM [XfJ)

= m [B[(X0,)’| IV @) + Vs (@ |ZE[ }—(iv&ﬂw)l E[Xﬁ])

> mE [(X0,)*] IV @)

As V. (w)" Ty (w).V, (w) = 0 and |V, (w)| #0, E [(Xl}r)ﬂ = 0. Consequently, for any j, we still

have E [X1,X;,]" = E[X2] E[X2].

Finally, for any r € [0,¢], there exists a vector A, € R? and a real-valued random variable U,
such that, for any w € €Q,

Xp (W) =Ur (w) Ar (21)



AsE [|X0\2} # 0 (the distribution of Xy is not a Dirac mass), using the conservation of energy,
X, # 0 as., then A, # 0 and U, # 0 a.s.. We can suppose |A.| = 1 for any » > 0. Then, by
conservation of momentum and energy, we notice that E [U,] = 0 and E [U,?] = E || Xo|?

The distribution of a solution of (NSDE (o,b)) is a measure-solution of the Landau equation
(6). Then, we will now study if the distribution of a process defined by (21) can be a solution of
the Landau equation. We denote by @ the distribution of U and by @Q; the distribution on R of
U;. Using (21), the equation (6) writes

d 1
G Lot = 530 [ e (=) 0sp () (d) Qi ()

ij=1

+Z/ O (2 — 1)) B0 (\e) Q¢ (d) Q¢ (dy)

RxR

for any test function ¢ € C? (Rd, ]R).
As |\ =1, fori,5 € {1,..,d}

aig M@ =1) = @=1)"h (@ =1)7) 65— Aidia)

b (e—y) = —(@d-D@-yh(@-°")r
Then,
d
& Q@) = 530 6= nen [ = (o= 0) G ) @ 00) Q)

(2 =9k ((z 1)) G (M) Q¢ (d) Qi (dy)

d
_1;zt4

We now explicit the equation satisfied by the 2-order moments of X: let k,l € N, k # [. Using
¢ (v) =v2 or ¢ (v) = Vv, v € RY, we obtain

d d
dt/Ak 22Qy (dz) = E{|X0|2} E/\,jt

= =) [ - (- 0) @) ity

xR

i/mmx Qudr) = B [IXoP] e
R — )’ h((@—y)*) Qi (dz) Qs (d
e [ @)k (0= 0)%) @i () @i (a)
Let us define f (t) = [z, p (= ’h ((CE - y)2) Q: (dx) Q¢ (dy). As h satisfies (3) and E [|X0|2] #

0, for any ¢t > 0, we notice that f t)>0
Let us now compute % ()\k%t)\l’zt), using two different ways :

E [|Xo|2} % ()‘kQ,t)‘l?t) = )‘k2,tE [|X0|2} %/\l?t + /\l,ztE DXO\Z} %Aﬁ,t
= Ao () + AL () = 2N N5 S (2)

E [|Xo|2} % ()\lf,t)\l?t) = 2t [|Xo| } 7 (Ak,eAie)
= —2d\2 NG ()
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Then A\; = 0, consequently X; = 0 which is impossible.
Finally, I; is invertible a.s. for any ¢ > 0 and according to theorem (a), the theorem is proved.
]

Remark 17 We notice that the matriz I', = fola(X,n — Y. (2))dz is invertible a.s., whereas
det (a (X, — Y, (2))) =0 for anyr, z. In fact, thanks to the nonlinearity of equation (NSDE (o,b)),
we can conclude that the Malliavin matriz has an inverse a.s..

Remark 18 A consequence of Theorem 14 is, for any i,j € {1,..,d}, i # j, for any t >0
E[X:: X4 < E[X,2] B [X2]

if the random vector Xy is not a constant.

4 Regularity of the weak function-solution

Theorem 19 Let X, be a random vector such that E [|Xo|"] < oo for anyp > 1. Let o and b be the
coefficients of the Landau equation respectively defined by (7), (2) and (4). We assume that o and
b are Lipschitz continuous and infinitely differentiable with bounded derivatives. If the distribution
of Xy is not a Dirac mass and if we denote by X the solution of the nonlinear stochastic differential
equation

t 1 t 1
= g — o . d' 107 S — [0 aas g
X=X+ [ [ oY) W @i+ [ [ b(X.~V.(@)dods  (NSDE (0.1)

then for any t > 0 the distribution of X; has a density of class C*° with respect the Lebesgue
measure on R?.

Corollary 20 Let Py be a probability measure such that [ |z|’ Py (dz) < co for any p > 1. Let
o and b be the coefficients of the Landau equation defined respectively by (7), (2) and (4). We
assume that o and b are Lipschitz continuous and infinitely differentiable with bounded derivatives.
If Py is not a Dirac measure, there exists a unique weak function solution of the Landau equation
of class C* with initial data Py.

Remark 21 Using the expressions (10) or (11), we notice that, if h is a bounded function of class
C> such that h®) (x) =0 (#) when x — +o0o for any l > 1, o and b are Lipschitz continuous
functions of class C*° with bounded derivatives.

Proof. As in the previous part, we assume that E [Xo] = 0 to simplify the computations. As
o and b satisfy Assumption (H°°), the process X is infinitely differentiable in the Malliavin sense.
We need to study the moments of the inverse of the determinant of the Malliavin matrix I; at time
t, for any t > 0, to apply Theorem (b). The expression of the determinant is complex, nevertheless
we can notice that in dimension d,

(det I,)"/4 > |‘i/r‘l£1<ItV, V)

where (.,.) is the euclidean scalar product in R
Moreover, see P. L. Morien [5] lemma 10.5.1, the property (i) of theorem (b) is satisfied as
soon as for any k € N

lim &P ((det )Y < cs) —0 (22)

£—
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where c is a positive constant which will be computed later. Indeed, let us fix p > 1 and k£ € N such
that k > d(p+1). If (22) is satisfied, there exists ¢g > 0 such that ¢ *P ((det It)l/d < cs) <1

for any € < gg. Let mg € N such that Ym > my, % < (ceo)d, then

1 > 1
_ < E p < <
E[(deuo”} = by P<mdetftm“)

o0
1
< 1427 Z mPP (det[t < —)
m=1 m
mo 1 oo 1
< 142° mPP (det[ < —> +2Pck _
mZ:l ' m 77L:;0+1 m%_

since % —p > 1, we obtain F [m} < 00.

Let ¢t >0 ble fixed.

As (det I;)? > inf}y=1 ([;V, V), we want to find a lower bound for inf|y|—; (/;V, V).
Let € be such that 0 < e < §. We consider V = (V;),,<4 € R such that |V| = 1.

¢ 1 d’ d 2
(LV,V) = //Z(ZDQZXZAJVZ) dzdr
0 JO =1

=1 \i=1
t 1 d d 2
= / /Z ZDiin,tVi dzdr
t—eJo 153 izl
2
> =1 —2I
= 3h 2
with
t 1 d d 2
L= / / Z Zai,l(Xr*Yr(Z))Vi dzdr
t—e JO 1—1 i—1
topd | d t 1 d d
I, = / /Z ZVz/ / ZZ8m0'i,k(Xs_Y;(OZ))DéT’Z)Xm’SWk(da’dS)
t=eJ0 =1 i=1 r J0 k=1m=1
d t 1 d 2
+Z‘/7’/ /O Z ambl (Xé _Ys(a)) DéT7Z)Xm7sdadS] dZdT'
i=1 r m=1
Then

9
inf (LV.V)> 2 inf I, — 2 sup I
AR (VYY) 2 3 nf L i
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We want to minimize the first integral:

[

=1

t 1 d d
— /ti/o ZZgi,l(Xr*Y}(Z))O'ﬁl(XT7}/;(2))‘/2,‘/}dzdr

i,j=11=1

t 1 d
/ / > aij (Xi =Y, (2)) ViVidadr
t—e JO
t

2

d
(Z i1 (X, =Y, (2)) Vi> dzdr

=1

Iy

4,j=1

= / V*I,..Vdr
t—e

Using the results of Section 3, we obtain
t d
L >m E [|Xﬂ VP -3 V2E[X.2] - Y ViViE (X, X,,] | dr
t—e i=1 i#j
We define the function
d
FOVr) = B[IX,P| VP = Y V2B [X2) = Y VB X, X,]
i=1 i#j
We notice that f is a positive continuous function (see Remark 18) on the compact subset
D= {V eRY:|V| = 1} U {7‘ : % <r< t}, then f reaches its minimum. So, if we denote by

6—inf{f(V,7’):V—1and%§7'§t}

we notice that ¢ is independent of w € 2, ¢ > 0 and
I]_ > m.C.€
Let us now study F [Supw‘:l 1217] for p > 1.

t 1 d d ¢ 1 d d
b= / / Z Z V;/ / Z Z Omaige (Xs =Y (@) Dér,z)Xm,SWk: (da, ds)
t—eJO 127 | =1 r Jo

k=1m=1
2

d + 1 d
+> 0V / /0 > Onbi (Xo — Yy (@) D}, ) X sdads| dedr
i=1 T m=1
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Using Burkholder-Davis-Gundy’s and Holder’s inequalities, and the fact that |V| = 1, we notice

that
d . 1 2
E | sup If] < KeP! / / ED / / Om0ik (Xs =Y () Dfy. oy X s Wi (dav, ds)| | dzdr
[VI=1 0 li,m 0
t 2p
/ / Ombi (X = Ye () DY,y Xom sdauds ]dzdr
t—e JO 1,i,m r
d’ t 1 2 P
< Ker! /t /0 B / /0 (amaak(xsst(a))ng)Xm,s) dads| | dzdr
€ lyi,k,m k=1YT"

fL ez

l,i,m

/a bi (Xs = Ya (@) DY,y Xom odads

2p
] dzdr

As the derivatives of o and b are bounded, using Holder’s inequality, we obtain

olene] < womr{ L2l tont o]

using Fubini’s Theorem

t s 1
< ngp—z/ E [/ / |D(T’2)XS|2p dzdr} ds
r t—e JO

Then, for any p > 2 there exists a constant K = K (p,d,d’, t) such that

E
|V|=1 0<s<t

s 1
sup IQP] < Ke?*~! sup E {/ / ‘D(T’Z)Xs|2p dzdr}
0o Jo

Let us now check that lim._.g e *P ((det It)% < ca) = 0, where k € N is fixed and ¢ = %mé

with ¢ the constant built in the study of the first integral I;.
Let p € N such that p > k + 1.

P ((det It)ﬁ < cs) < P <|‘i/nf1<ItV, V) < ca)

IA

3 V=1 [V|=1

P sup Iy > &«
V|=1 2

using Tchebychev’s Inequality

2 P
< (—) e PE | sup I
¢ Vi=1

< KePt

2
IP’(— inf I; —2 sup I <cs>

IN

Then, lim. o *P ((det It)% < cs) = 0 and we can apply Theorem (b). So the theorem is
proved. m
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