Existence and regularity of a weak function-solution for some Landau equations with a stochastic approach

Hélène Guérin*

March 13, 2001

Abstract

Using the Malliavin Calculus, this paper proves the existence of a weak function-solution of class \mathcal{C}^{∞} of the Landau equation for a generalization of Maxwellian molecules when the initial data is a probability measure.

Key Words: Landau Equation, Malliavin Calculus, White Noise, Nonlinear Stochastic Differential Equation.

MSC 2000: 60H07, 60H30, 82C40

1 Introduction

The Landau equation, also called the Fokker-Planck-Landau equation, is obtained as limit of the Boltzmann equation when all the collisions become grazing. Its expression, in the spatially homogeneous case, is:

$$\frac{\partial f}{\partial t}(v,t) = \frac{1}{2} \sum_{i,j=1}^{d} \frac{\partial}{\partial v_i} \left\{ \int_{\mathbb{R}^d} dv_* a_{ij} \left(v - v_*\right) \left[f\left(v_*,t\right) \frac{\partial f}{\partial v_j} \left(v,t\right) - f\left(v,t\right) \frac{\partial f}{\partial v_{*j}} \left(v_*,t\right) \right] \right\}$$
(1)

where $f(v,t) \geq 0$ is the density of particles with velocity $v \in \mathbb{R}^d$ at time $t \in \mathbb{R}^+$, and $(a_{ij}(z))_{1 \leq i,j \leq d}$ is a nonnegative symmetric matrix depending on the interaction between the particles.

In this paper, we study the Landau equation for a generalization of Maxwell gas. We consider a matrix a of the form

$$a_{ij}(z) = h\left(|z|^2\right)\left(|z|^2 \delta_{ij} - z_i z_j\right)$$
(2)

where h is a positive continuous function on \mathbb{R}_+ such that there exist m, M > 0 with $\forall z \in \mathbb{R}^d$

$$m \le h\left(|z|^2\right) \le M \tag{3}$$

When h is a constant, we recognize the coefficient of the Landau equation for Maxwellian molecules. We define the vector b by

$$b_{i}(z) = \sum_{j=1}^{d} \partial_{j} a_{ij}(z)$$

$$= -(d-1) h(|z|^{2}) z_{i}$$
(4)

Then, by integration by parts, we can give a weak formulation of the equation (1), and consequently we define the notion of weak function-solution:

 $^{^*}$ Université Paris 10, MODALX, UFR SEGMI, 200 avenue de la République, 92000 Nanterre, hguerin@ccr.jussieu.fr

Definition 1 Let f(.,0) be a nonnegative function on \mathbb{R}^d with finite mass and energy. A nonnegative function f on $\mathbb{R}^d \times \mathbb{R}^+$ is a <u>weak function-solution</u> of the Landau equation with initial data f(.,0), if f satisfies the following equation for any test function $\varphi \in \mathcal{C}_b^2(\mathbb{R}^d,\mathbb{R})$

$$\frac{d}{dt} \int \varphi(v) f(v,t) dv = \frac{1}{4} \sum_{i,j=1}^{d} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} dv dv_{*} f(v,t) f(v_{*},t) a_{ij} (v-v_{*}) \left(\partial_{ij} \varphi(v) + \partial_{ij} \varphi(v_{*}) \right)$$

$$+\frac{1}{2}\sum_{i=1}^{d}\int_{\mathbb{R}^{d}\times\mathbb{R}^{d}}dvdv_{*}f(v,t)f\left(v_{*},t\right)b_{i}\left(v-v_{*}\right)\left(\partial_{i}\varphi\left(v\right)-\partial_{i}\varphi\left(v_{*}\right)\right)$$
(5)

where $\partial_i \varphi = \frac{\partial \varphi}{\partial v_i}$ and $\partial_{ij} \varphi = \frac{\partial^2 \varphi}{\partial v_i \partial v_j}$.

The equation (5) conserves mass, momentum and energy. Thus, if there exists a weak function-solution f of (5) with an initial data satisfying $\int_{\mathbb{R}^d} f(v,0) dv = 1$, the measure P_t on \mathbb{R}^d given by $P_t(dv) = f(v,t) dv$ is a probability measure, for any $t \geq 0$. Thus, we define a probabilistic notion of solutions of the Landau equation:

Definition 2 Let P_0 be a probability measure on \mathbb{R}^d with a finite two-order moment (i.e. $\int_{\mathbb{R}^d} |v|^2 P_0(dv) < \infty$). A <u>measure-solution</u> of the Landau equation (6) with initial data P_0 is a probability flow $(P_t)_{t\geq 0}$ on \mathbb{R}^d satisfying

$$\frac{d}{dt} \int \varphi(v) P_t(dv) = \frac{1}{2} \sum_{i,j=1}^d \int_{\mathbb{R}^d} P_t(dv) \left(\int_{\mathbb{R}^d} P_t(dv_*) a_{ij} (v - v_*) \right) \partial_{ij} \varphi(v) + \sum_{i=1}^d \int_{\mathbb{R}^d} P_t(dv) \left(\int_{\mathbb{R}^d} P_t(dv_*) b_i (v - v_*) \right) \partial_i \varphi(v) \tag{6}$$

for any function $\varphi \in \mathcal{C}_b^2(\mathbb{R}^d, \mathbb{R})$.

This approach allows us to have weaker conditions on the initial data, i.e. we can assume that the initial data is a probability measure and not necessarily a density of probability.

Remark 3 With an abuse of notation, we will still say that a probability measure P on $C([0,T], \mathbb{R}^d)$ is a measure-solution of the Landau equation when its time-marginals flow is a measure-solution in the sense of Definition 2.

We have already proved, in [3], the existence of a probability measure-solution of the Landau equation (6). We are here interested in proving with a stochastic approach the existence of a weak function-solution of (5) of class C^{∞} .

We recall briefly the main results of [3]. We have associated with the Landau equation (6) a nonlinear stochastic differential equation driven by a space-time white noise. We highlight the nonlinearity using two probability spaces: let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ be a filtered probability space and $([0,1], \mathcal{B}([0,1]), d\alpha)$ be an auxiliary probability space, where $d\alpha$ is the Lebesgue measure on [0,1]. In order to avoid any confusion, we will denote by E the expectation and \mathcal{L} the distribution of a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ and E_{α} , \mathcal{L}_{α} for a random variable on $([0,1], \mathcal{B}([0,1]), d\alpha)$.

For $k \geq 2$, we define \mathcal{P}_k the space of continuous adapted processes $X = (X_t)_{t \geq 0}$ from $\left(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P}\right)$ to \mathbb{R}^d , such that $E\left[\sup_{0 \leq t \leq T} \left|X_t\right|^k\right] < \infty \ \forall T > 0$, and $\mathcal{P}_{k,\alpha}$ the space of continuous processes $Y = (Y_t)_{t \geq 0}$ from $([0,1], \mathcal{B}([0,1]), d\alpha)$ to \mathbb{R}^d , such that $E_{\alpha}\left[\sup_{0 \leq t \leq T} \left|Y_t\right|^k\right] < \infty \ \forall T > 0$.

a is a nonnegative symmetric matrix, then there exists a matrix σ of order $d \times d'$ such that

$$a = \sigma.\sigma^* \tag{7}$$

where σ^* is the adjoint matrix of σ .

We define a d'- dimensional space-time white noise on $[0,1] \times [0,\infty)$ by

$$W^{d'} = \begin{pmatrix} W_1 \\ \vdots \\ W_{d'} \end{pmatrix} \tag{8}$$

where the W_i are independent space-time white noises with covariance measure $d\alpha dt$ on $[0,1] \times [0,\infty)$ (according to Walsh's Definition, [8]).

Let X_0 be a random vector on \mathbb{R}^d , independent of $W^{d'}$, with a finite moment of order 2. We consider the following nonlinear stochastic differential equation:

Definition 4 Let X_0 and $W^{d'}$ be defined as below. A couple of process (X,Y) on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P}) \times ([0,1], \mathcal{B}([0,1]), d\alpha)$ is solution of the nonlinear stochastic differential equation $(NSDE(\sigma,b))$ if for any $t\geq 0$

$$X_{t} = X_{0} + \int_{0}^{t} \int_{0}^{1} \sigma\left(X_{s} - Y_{s}\left(\alpha\right)\right) . W^{d'}\left(d\alpha, ds\right) + \int_{0}^{t} \int_{0}^{1} b\left(X_{s} - Y_{s}\left(\alpha\right)\right) d\alpha ds$$
and $\mathcal{L}\left(X\right) = \mathcal{L}_{\alpha}\left(Y\right)$.

We notice, using Ito's Formula, that the distribution of a solution of $(NSDE(\sigma, b))$ is a weak measure-solution of the Landau equation (6) with initial data $P_0 = \mathcal{L}(X_0)$.

In [3] (Theorem 10), we have proved the following theorem for k = 2, but, adapting the proofs, it is still true for any $k \ge 2$.

Theorem 5 Assume that $W^{d'}$ is a d'-dimensional space-time white noise and assume that X_0 is an independent random vector on \mathbb{R}^d with finite moment of order k. If the functions σ and b, defined by (7), (2) and (4), are Lipschitz continuous, there exists a couple (X,Y), unique in law, solution of the nonlinear equation $(NSDE(\sigma,b))$ with $(X,Y) \in \mathcal{P}_k \times \mathcal{P}_{k,\alpha}$.

Corollary 6 Assume that P_0 is a probability measure with a finite moment of order 2. There exists a measure-solution $(P_t)_{t\geq 0}$ with initial data P_0 to the Landau equation (6) when σ and b are Lipschitz continuous functions.

Corollary 7 Assume that P_0 is a probability measure with a finite moment of order 2. There is uniqueness of the measure-solution $(P_t)_{t\geq 0}$ with initial data P_0 to the Landau equation (6) when σ and b are Lipschitz continuous functions.

Proof.

• We just have to prove the uniqueness of the solution $(Q_t^{\mu})_{t\geq 0}$ of the linear Landau equation, i.e.

$$\frac{d}{dt} \int \varphi(v) Q_t(dv) = \frac{1}{2} \sum_{i,j=1}^d \int_{\mathbb{R}^d} Q_t(dv) \left(\int_{\mathbb{R}^d} \mu_t(dv_*) a_{ij} (v - v_*) \right) \partial_{ij} \varphi(v) + \sum_{i=1}^d \int_{\mathbb{R}^d} Q_t(dv) \left(\int_{\mathbb{R}^d} \mu_t(dv_*) b_i (v - v_*) \right) \partial_i \varphi(v) \tag{9}$$

where $(\mu_t)_{t\geq 0}$ is a probability flow on \mathbb{R}^d . In fact, as a measure-solution $(P_t)_{t\geq 0}$ to the *(nonlinear)* Landau equation is also a solution of the linear equation (9) with $\mu_t = P_t$ for any $t \geq 0$, by uniqueness of the measure-solution of (9), $(P_t)_{t\geq 0}$ is uniquely determined.

• The linear Landau equation (9) satisfies the assumptions of [2] Theorem 5.2, then there is uniqueness of the measure-solution of (9).

Remark 8 We notice that we can choose

$$\sigma\left(z\right) = \sqrt{h\left(\left|z\right|^{2}\right)} \begin{bmatrix} z_{2} \\ -z_{1} \end{bmatrix} \tag{10}$$

in dimension two, and

$$\sigma(z) = \sqrt{h(|z|^2)} \begin{bmatrix} z_2 & -z_3 & 0\\ -z_1 & 0 & z_3\\ 0 & z_1 & -z_2 \end{bmatrix}$$
(11)

in dimension three. Then, if h is a bounded function of class C^1 with $h'(x) = O\left(\frac{1}{x^2}\right)$ when $x \to +\infty$, σ and b are Lipschitz continuous functions of class C^1 on \mathbb{R}^d , for d=2,3. This property can be generalized in higher dimension.

The aim of this article is to find a weak function-solution of the Landau equation when the initial data is a probability measure. To state the existence of a weak function-solution of (5) from a measure-solution, it is enough to show that the measure-solution is absolutely continuous with respect the Lebesgue measure. Indeed, if $(P_t)_{t\geq 0}$ is a measure-solution of (6) with initial data P_0 and if there exists a nonnegative function f_t on \mathbb{R}^d such that $P_t(dv) = f_t(v) dv$ for any t > 0, then the function f defined by $f(v,t) = f_t(v)$ for any $v \in \mathbb{R}^d$, t > 0, is a weak function-solution of (5) with initial data P_0 .

The idea consists in using the relation between the Landau equation and the nonlinear differential equation $(NSDE(\sigma, b))$. In fact, we develop a Malliavin Calculus for the value X_t , t > 0, of the solution X of $(NSDE(\sigma, b))$ obtained in Theorem 5, inspired by the methods used by V. Bally and E. Pardoux in [1] and by D. Nualart in [6].

The Maxwellian case (i.e., when the function h is a constant) is studied in detail with an analytic approach by C. Villani in [7]. When the initial data is a nonnegative function f_0 with finite mass and energy, C. Villani has proved the existence and the uniqueness of a solution of (1) of class \mathcal{C}^{∞} .

We prove here the existence of a weak function-solution of the Landau equation (5) of class C^{∞} when the initial data is a probability measure with finite moments for some bounded functions h.

1.1 About the Malliavin calculus for a white noise

The Malliavin calculus is almost the same for the white noise as for the Brownian Motion. We use in the following the same notation as D. Nualart, [6]. We just recall the definitions of the main spaces for the Malliavin calculus.

Let $W^{d'}$ be a d'-dimensional space-time white noise.

Let S be the class of random variables F having the following form

$$F = f\left(W^{d'}\left(g_1\right), ..., W^{d'}\left(g_n\right)\right)$$

where f is a \mathcal{C}^{∞} real values function on \mathbb{R}^n with partial derivatives having polynomial growth, $g = (g_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq d'}}$ is a matrix with components in $\mathbb{L}^2([0,1] \times [0,\infty), d\alpha ds)$, and

$$W^{d'}\left(g_{i}\right) = \sum_{j=1}^{d'} \int_{0}^{\infty} \int_{0}^{1} g_{ij}\left(s,\alpha\right) W_{j}\left(d\alpha,ds\right)$$

Assuming that $(r,z) \in [0,\infty) \times [0,1]$, we define the first order Malliavin derivative $D_{(r,z)}^l F$ of F in relation to the l^{th} white noise W_l at point (r, z), with $l \in \{1, ..., d'\}$, by

$$D_{(r,z)}^{l}F = \sum_{i=1}^{n} \partial_{i} f\left(W^{d'}(g_{1}), ..., W^{d'}(g_{n})\right) g_{il}(r,z)$$

We will say that F is differentiable when all its first derivatives exist.

For $k \geq 1$, $\lambda_k = ((r_1, z_1), ..., (r_k, z_k))$ with $r_m \in [0, \infty)$ and $z_m \in [0, 1]$, m = 1, ..., k. We define by iteration the derivatives of order k. Let $(l_1, ..., l_k)$ be a k-uplet of $\{1, ..., d'\}$, we denote by

$$D_{\lambda_k}^{l_1,\dots,l_k}F = D_{(r_k,z_k)}^{l_k}D_{(r_{k-1},z_{k-1})}^{l_{k-1}}...D_{(r_1,z_1)}^{l_1}F$$

We will say that F has a derivative of order k when all its derivatives of order k exist.

We denote by $\mathbb{D}^{k,p}$ the completion of \mathcal{S} with respect to the norm

$$||F||_{k,p} = \left[E(|F|^p) + \sum_{m=1}^k \sum_{l_1,\dots,l_m=1}^{d'} E(||D^{l_1,\dots,l_m}F||_{\mathbb{L}^2(\Lambda_m)}^p) \right]^{\frac{1}{p}}$$

where

$$\left\|D^{l_1,\dots,l_m}F\right\|_{\mathbb{L}^2(\Lambda_m)}^2 = \int_{\Lambda_m} \left|D^{l_1,\dots,l_m}_{\lambda_m}F\right|^2 d\lambda_m$$

with $\Lambda_m = ([0, \infty) \times [0, 1])^m$ and $\lambda_m = ((r_1, z_1), ..., (r_m, z_m)) \in \Lambda_m$.

We also denote by \mathbb{D}^{∞} the subspace of the infinitely differentiable variables:

$$\mathbb{D}^{\infty} = \bigcap_{p \geq 1} \bigcap_{k \geq 1} \mathbb{D}^{k,p}$$

When F is a random vector in \mathbb{R}^d , we derive component by component and we denote by DF the matrix $(DF)_{i,l} = D^l F_i$, $1 \le i \le d, 1 \le l \le d'$. The Malliavin matrix is defined by

$$I = \int_{0}^{T} \int_{0}^{1} D_{(r,z)} F. \left(D_{(r,z)} F \right)^{*} dz dr$$

In this paper, under suitable assumptions on σ and b and integrability conditions on the initial data X_0 , we show that for any t>0 the value X_t of X obtained in Theorem 5 satisfies the conditions of one of those two following theorems.

Theorem (a) (see [6] Theorem 2.1.2)

Let $F = (F_1, ..., F_d)$ be a random vector on $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying the following conditions:

(i) F_i belongs to the space $\mathbb{D}^{1,p}$, p>1, for any i=1,...,d. (ii) The Malliavin matrix $I=\int_0^\infty \int_0^1 D_{(r,z)}F.\left(D_{(r,z)}F\right)^*dzdr$ is invertible a.s.. Then the distribution of F is absolutely continuous with respect the Lebesgue measure on \mathbb{R}^d .

Theorem (b) (see [6] Corollary 2.1.2)

Let $F = (F_1, ..., F_d)$ be a random vector on $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying the following conditions:

- (i) F_i belongs to \mathbb{D}^{∞} , for any i = 1, ..., d.
- (ii) The Malliavin matrix $I = \int_0^\infty \int_0^1 D_{(r,z)} F. (D_{(r,z)} F)^* dz dr$ satisfies

$$(\det I)^{-1} \in \bigcap_{p>1} \mathbb{L}^p(\Omega)$$

Then F has an infinitely differentiable density.

1.2 Notations

- $\mathcal{C}\left(\left[0,T\right],\mathbb{R}^{d}\right)$ is the space of continuous functions from $\left[0,T\right]$ to \mathbb{R}^{d} , and for $k \in \mathbb{N}$, $\mathcal{C}_{b}^{k}\left(\left[0,T\right],\mathbb{R}^{d}\right)$ is the space of functions of class \mathcal{C}^{k} with all its derivatives bounded up to order k.
- $\mathcal{M}_{d,d'}(\mathbb{R})$ is the set of $d \times d'$ matrix on \mathbb{R} .
- For $k \geq 2$, a random variable Z on $(\Omega, \mathcal{F}, \mathbb{P})$ belongs to $\in \mathbb{L}^k$ if Z has a finite moment of order k, i.e. $E\left[|Z|^k\right] < \infty$.
- K is an arbitrary notation for a positive constant (K can change from line to line).

2 Computation of the derivatives of X

2.1 The first derivative

Assumption (H^1) : σ and b are Lipschitz continuous functions of class \mathcal{C}^1 from \mathbb{R}^d to $\mathcal{M}_{d,d'}(\mathbb{R})$ and \mathbb{R}^d respectively.

We denote by K_{σ} and K_b their Lipschitz constants.

Theorem 9 We assume that X_0 has a finite 2-order moment. Let (X,Y) be the solution of the nonlinear stochastic differential equation $(NSDE(\sigma,b))$ obtained in theorem 5. (Y will play a parameter role in the following.)

Under Assumption (H^1) , $\forall t \in [0,T] \ \forall i=1,...,d, \ X_{i,t} \in \mathbb{D}^{1,2}$. The i^{th} component of its derivative in relation to the l^{th} white noise at point $(r,z) \in [0,\infty) \times [0,1]$ is given by

$$\begin{split} D_{(r,z)}^{l}X_{i,t} &= \sigma_{i,l}\left(X_{r} - Y_{r}\left(z\right)\right) \\ &+ \int_{r}^{t} \int_{0}^{1} \sum_{k=1}^{d'} \sum_{m=1}^{d} \partial_{m}\sigma_{i,k}\left(X_{s} - Y_{s}\left(\alpha\right)\right) D_{(r,z)}^{l}X_{m,s}W_{k}\left(d\alpha,ds\right) \\ &+ \int_{r}^{t} \int_{0}^{1} \sum_{m=1}^{d} \partial_{m}b_{i}\left(X_{s} - Y_{s}\left(\alpha\right)\right) D_{(r,z)}^{l}X_{m,s}d\alpha ds \end{split}$$

if $t \ge r$ and $D_{(r,z)}^l X_{i,t} = 0$ if t < r.

Proof. We consider the Picard sequence of \mathcal{P}_2 -processes defined by

$$X_{t}^{0} = X_{0}$$

$$X_{t}^{n+1} = X_{0} + \int_{0}^{t} \int_{0}^{1} \sigma \left(X_{s}^{n} - Y_{s}(\alpha)\right) . W^{d'}(d\alpha, ds) + \int_{0}^{t} \int_{0}^{1} b \left(X_{s}^{n} - Y_{s}(\alpha)\right) d\alpha ds \quad (12)$$

Then, the i^{th} component writes

$$X_{i,t}^{n+1} = X_{i,0} + \int_{0}^{t} \int_{0}^{1} \sum_{k=1}^{d'} \sigma_{i,k} \left(X_{s}^{n} - Y_{s} \left(\alpha \right) \right) W_{k} \left(d\alpha, ds \right) + \int_{0}^{t} \int_{0}^{1} b_{i} \left(X_{s}^{n} - Y_{s} \left(\alpha \right) \right) d\alpha ds$$

According to [3] Theorem 8, the sequence (X^n) satisfies

$$\sup_{n} E \left[\sup_{0 \le r \le T} |X_{r}^{n}|^{2} \right] < \infty \tag{13}$$

and converges for the norm $||U|| = \left\| \sup_{0 \le t \le T} U_t \right\|_{\mathbb{L}^2}$ toward X.

Let T > 0 be arbitrary fixed. Let $t \in [0, T]$ and $(r, z) \in [0, T] \times [0, 1]$ be fixed.

We show firstly by recurrence that for any $n \geq 0$ X_t^n is differentiable at point (r, z) in the Malliavin sense.

Recurrence Hypothesis: (i)
$$X_{i,t}^n \in \mathbb{D}^{1,2} \ \forall t \in [0,T] \ \ \forall i=1,...,d.$$

$$(ii) \sup_{t \in [0,T]} \sum_{l=1}^{d'} E\left(\int_0^\infty \int_0^1 \left| D_{(r,z)}^l X_t^n \right|^2 dz dr \right) < \infty \text{ where } \left| D_{(r,z)}^l X_t^n \right|^2 = \sum_{i=1}^d \left(D_{(r,z)}^l X_{i,t}^n \right)^2.$$

We assume that it is true at rank n. Since σ and b are functions of class \mathcal{C}_b^1 , according to [6] proposition 1.2.2, $\forall i = 1,..,d \ \forall k = 1,..,d'$, we have

$$\sigma_{i,k} \left(X_t^n - Y_t \left(\alpha \right) \right) \in \mathbb{D}^{1,2}$$
$$b_i \left(X_t^n - Y_t \left(\alpha \right) \right) \in \mathbb{D}^{1,2}$$

As for the Brownian Motion, we can show that derivative and integral commute (see [6]), then $X_{i,t}^{n+1} \in \mathbb{D}^{1,2} \ \forall t \in [0,T] \ \forall i=1,...,d$. Moreover, its derivative at point $(r,z) \in [0,T] \times [0,1]$ in relation to the l^{th} white noise W_l is given by

$$\begin{split} D_{(r,z)}^{l}X_{i,t}^{n+1} &= \sigma_{i,l}\left(X_{r}^{n} - Y_{r}\left(z\right)\right) \\ &+ \int_{r}^{t} \int_{0}^{1} \sum_{k=1}^{d'} \sum_{m=1}^{d} \partial_{m}\sigma_{i,k}\left(X_{s}^{n} - Y_{s}\left(\alpha\right)\right) D_{(r,z)}^{l}X_{m,s}^{n}W_{k}\left(d\alpha,ds\right) \\ &+ \int_{r}^{t} \int_{0}^{1} \sum_{m=1}^{d} \partial_{m}b_{i}\left(X_{s}^{n} - Y_{s}\left(\alpha\right)\right) D_{(r,z)}^{l}X_{m,s}^{n}d\alpha ds \end{split}$$

 $\begin{array}{l} \text{if } r \leq t, \text{ and } D_{(r,z)}^{l} X_{i,t}^{n+1} = 0 \text{ else.} \\ \text{We still have to check that} \end{array}$

$$\sup_{t \in [0,T]} \sum_{l=1}^{d'} E\left[\int_0^{\infty} \int_0^1 \left| D_{(r,z)}^l X_t^{n+1} \right|^2 dz dr \right] < \infty$$

We define

$$S_{n} = \sup_{t \in [0,T]} \sum_{l=1}^{d'} E \left[\int_{0}^{\infty} \int_{0}^{1} \left| D_{(r,z)}^{l} X_{t}^{n} \right|^{2} dz dr \right]$$
$$= \sup_{t \in [0,T]} \sum_{l=1}^{d'} E \left[\int_{0}^{t} \int_{0}^{1} \left| D_{(r,z)}^{l} X_{t}^{n} \right|^{2} dz dr \right]$$

According to Recurrence Hypothesis, $S_n < \infty$. Let us study S_{n+1} .

Let $l \in \{1, ..., d'\}$ be arbitrary fixed. We divide in three parts the expectation $E\left[\int_0^t \int_0^1 \left|D_{(r,z)}^l X_{i,t}^{n+1}\right|^2 dz dr\right]$. We define

$$E_{1} = E\left[\int_{0}^{t} \int_{0}^{1} |\sigma_{i,l} (X_{r}^{n} - Y_{r}(z))|^{2} dz dr\right]$$

$$\leq 2K_{\sigma}^{2} E\left[\int_{0}^{t} \int_{0}^{1} |X_{r}^{n}|^{2} + |Y_{r}(z)|^{2} dz dr\right] + T |\sigma(0)|$$
since σ is Lipschitz continuous
$$\leq 2K_{\sigma}^{2} T\left[\sup_{n} E\left[\sup_{0 \leq r \leq T} |X_{r}^{n}|^{2}\right] + E_{\alpha}\left[\sup_{0 \leq r \leq T} |Y_{r}|^{2}\right]\right] + T |\sigma(0)|$$

According to (13), we have $\sup_{0 \le t \le T} E_1 < \infty$. We define

$$E_{2} = E \left[\int_{0}^{t} \int_{0}^{1} \left| \int_{r}^{t} \int_{0}^{1} \sum_{k=1}^{d'} \sum_{m=1}^{d} \partial_{m} \sigma_{i,k} \left(X_{s}^{n} - Y_{s} \left(\alpha \right) \right) D_{(r,z)}^{l} X_{m,s}^{n} W_{k} \left(d\alpha, ds \right) \right|^{2} dz dr \right]$$

$$= \int_{0}^{t} \int_{0}^{1} E \left[\int_{r}^{t} \int_{0}^{1} \sum_{k=1}^{d'} \left(\sum_{m=1}^{d} \partial_{m} \sigma_{i,k} \left(X_{s}^{n} - Y_{s} \left(\alpha \right) \right) D_{(r,z)}^{l} X_{m,s}^{n} \right)^{2} d\alpha ds \right] dz dr$$
since W_{k} are independent
$$\leq d \sum_{k=1}^{d'} \sum_{m=1}^{d} \int_{0}^{t} \int_{0}^{1} E \left[\int_{r}^{t} \int_{0}^{1} \left(\partial_{m} \sigma_{i,k} \left(X_{s}^{n} - Y_{s} \left(\alpha \right) \right) D_{(r,z)}^{l} X_{m,s}^{n} \right)^{2} d\alpha ds \right] dz dr$$
using Hölder's Inequality

Since the partial derivatives of σ are bounded by K_{σ} ,

$$\begin{split} E_2 & \leq dK_\sigma^2 \sum_{k=1}^{d'} \sum_{m=1}^d \int_0^t \int_0^1 E\left[\int_r^t \int_0^1 \left[D_{(r,z)}^l X_{m,s}^n\right]^2 d\alpha ds\right] dz dr \\ & = d' dK_\sigma^2 \int_0^t E\left[\int_0^s \int_0^1 \left|D_{(r,z)}^l X_s^n\right|^2 dz dr\right] ds \\ & \text{using Fubini's Theorem} \\ & \leq d' dK_\sigma^2 \int_0^t \sup_{s \in [0,T]} E\left[\int_0^s \int_0^1 \left|D_{(r,z)}^l X_s^n\right|^2 dz dr\right] ds \\ & \leq d' dK_\sigma^2 T S_n \end{split}$$

Then, by Recurrence Hypothesis, we have $\sup_{0 \le t \le T} E_2 < \infty$.

$$E_{3} = E\left[\int_{0}^{t} \int_{0}^{1} \left| \int_{r}^{t} \int_{0}^{1} \sum_{m=1}^{d} \partial_{m} b_{i} \left(X_{s}^{n} - Y_{s}\left(\alpha\right)\right) D_{(r,z)}^{l} X_{m,s}^{n} d\alpha ds \right|^{2} dz dr\right]$$

Using the same method as for integral E_2 , we also have $\sup_{0 \le t \le T} E_3 < \infty$. Finally, we have proved that for any $l \in \{1,..,d'\}$

$$\sup_{t \in [0,T]} E\left(\int_0^t \int_0^1 \left| D_{(r,z)}^l X_t^{n+1} \right|^2 dz dr\right) \le C_0 + C_1 T S_n < \infty$$

with

$$C_{0} = 6dK_{\sigma}^{2}T\left(\sup_{n}E\left(\sup_{0\leq r\leq T}\left|X_{r}^{n}\right|^{2}\right) + E_{\alpha}\left(\sup_{0\leq r\leq T}\left|Y_{r}\right|^{2}\right)\right) + 3dT\left|\sigma\left(0\right)\right|$$

$$C_{1} = 6d^{2}\max\left(d'K_{\sigma}^{2}, K_{b}^{2}T\right)$$

Thus, Recurrence Hypothesis is satisfied for any $n \geq 0$.

We notice that we have in fact a stronger result concerning property (ii):

Lemma 10 The sequence of the first derivatives of $(X^n)_{n>0}$ satisfies

$$\sup_{n\geq 0}\sup_{t\in[0,T]}\sum_{l=1}^{d'}E\left(\int_0^t\int_0^1\left|D_{(r,z)}^lX_t^n\right|^2dzdr\right)\leq C<\infty$$

Proof. We have already checked the following estimate

$$E\left(\int_0^t \int_0^1 \left| D_{(r,z)}^l X_t^{n+1} \right|^2 dz dr \right) \leq C_0 + C_1 \int_0^t S_n ds$$
$$= C_0 + C_1 t S_n$$

Since $S_0 = 0$,

$$E\left(\int_0^t \int_0^1 \left| D_{(r,z)}^l X_t^1 \right|^2 dz dr \right) \le C_0$$

$$E\left(\int_{0}^{t} \int_{0}^{1} \left|D_{(r,z)}^{l} X_{t}^{n}\right|^{2} dz dr\right) \leq C_{0} + C_{0}C_{1}t + \dots + C_{0}C_{1}^{n-1} \frac{t^{n-1}}{(n-1)!}$$

If we define $C = d'C_0e^{C_1T}$, we have

$$\sup_{n\geq 0}\sup_{t\in[0,T]}\sum_{l=1}^{d'}E\left(\int_0^t\int_0^1\left|D_{(r,z)}^lX_t^n\right|^2dzdr\right)\leq C$$

Finally, we have proved

$$\forall n \ge 0 \ \forall t \in [0, T] \quad \forall i = 1, ..., d \quad X_{i,t}^n \in \mathbb{D}^{1,2}$$

$$\tag{14}$$

$$\sup_{n\geq 0} \sup_{t\in[0,T]} \sum_{l=1}^{d'} E\left(\int_0^t \int_0^1 \left| D_{(r,z)}^l X_t^n \right|^2 dz dr \right) < \infty \tag{15}$$

Since the sequence (X^n) converges uniformly on [0,T] in \mathbb{L}^2 toward X and thanks to (14) and (15), we deduce that X is differentiable (see [6] lemma 1.2.3). Moreover, the sequence of derivatives (DX^n) converges toward DX for the weak topology on $\mathbb{L}^2([0,T]\times[0,1]\times\Omega)$. Thus, the theorem is proved.

The upper order derivatives

We state that X belongs to \mathbb{D}^{∞} under a stronger assumption on σ and b.

Assumption (H^{∞}) : σ and b are Lipschitz continuous functions of class \mathcal{C}^{∞} with bounded derivatives from \mathbb{R}^d to $\mathcal{M}_{d,d'}(\mathbb{R})$ and \mathbb{R}^d respectively.

<u>Notations</u>: Let $k \geq 1$. We define $\lambda_k = ((r_1, z_1), ..., (r_k, z_k))$ and

$$\hat{\lambda}_m = ((r_1, z_1), ..., (r_{m-1}, z_{m-1}), (r_{m+1}, z_{m+1}), ..., (r_k, z_k))$$

with $r_m \in [0, t]$ and $z_m \in [0, 1]$ for m = 1, ..., k.

Let us now define $l\left(E\right)=l_{\varepsilon_{1}},...,l_{\varepsilon_{\eta}}$ and $\lambda\left(E\right)=\left(\left(r_{\varepsilon_{1}},z_{\varepsilon_{1}}\right),...,\left(r_{\varepsilon_{\eta}},z_{\varepsilon_{\eta}}\right)\right)$ for any subspace $E=\left\{ \varepsilon_{1},...,\varepsilon_{\eta}\right\}$ of $\left\{ 1,...,k\right\}$. We consider

$$\Sigma_{j,(l_{1},...,l_{k})}^{i}\left(\left(s,\alpha\right),\lambda_{k}\right) = \sum_{k_{1},...,k_{\nu}=1}^{d}\left(\partial_{k_{1}}...\partial_{k_{\nu}}\sigma_{i,j}\right)\left(X_{s}-Y_{s}\left(\alpha\right)\right) \times D_{\lambda(E_{1})}^{l(E_{1})}X_{k_{1},s}...\times D_{\lambda(E_{\nu})}^{l(E_{\nu})}X_{k_{\nu},s}$$

$$\beta_{(l_1,...,l_k)}^i((s,\alpha),\lambda_k) = \sum_{k_1,...,k_{\nu}=1}^d (\partial_{k_1}...\partial_{k_{\nu}}b_i) (X_s - Y_s(\alpha)) \times D_{\lambda(E_1)}^{l(E_1)} X_{k_1,s}... \times D_{\lambda(E_{\nu})}^{l(E_{\nu})} X_{k_{\nu},s}$$

where the first sum is taken on all partitions $E_1 \cup ... \cup E_{\nu} = \{1, ..., k\}$.

We define at last,

$$\Sigma_{i}^{i}\left(\left(s,\alpha\right)\right) = \sigma_{ij}\left(X_{s} - Y_{s}\left(\alpha\right)\right)$$

We denote by $r_1 \vee ... \vee r_k = \sup\{r_1, ..., r_k\}$.

Theorem 11 Assume that $X_0 \in \mathbb{L}^p$, for any $p \geq 1$. Under Assumption (H^{∞}) , $\forall t \geq 0 \ X_t \in \mathbb{D}^{\infty}$. Moreover, the ith component of one of its derivative of order k at point $\lambda_k = ((r_1, z_1), ..., (r_k, z_k))$ is given by the following equation

$$D_{\lambda_{k}}^{l_{1},\dots,l_{k}}X_{i,t} = \sum_{m=1}^{k} \Sigma_{l_{m},(l_{1},\dots l_{m-1},l_{m+1},\dots,l_{k})}^{i} \left((r_{m},z_{m}), \hat{\lambda}_{m} \right) + \int_{r_{1}\vee\dots\vee r_{k}}^{t} \int_{0}^{1} \sum_{j=1}^{d'} \Sigma_{j,(l_{1},\dots,l_{k})}^{i} \left((s,\alpha), \lambda_{k} \right) W_{j} \left(d\alpha, ds \right) + \int_{r_{1}\vee\dots\vee r_{k}}^{t} \int_{0}^{1} \beta_{(l_{1},\dots,l_{k})}^{i} \left((s,\alpha), \lambda_{k} \right) d\alpha ds$$

$$(16)$$

 $\label{eq:continuous_state} \text{if } t \geq r_1 \vee \ldots \vee r_k \ \text{ and } D_{\lambda_k}^{l_1,\ldots,l_k} X_{i,t} = 0 \ \text{if } t < r_1 \vee \ldots \vee r_k.$

Remark 12 In expression (16) of the k^{th} derivative, the terms in the first sum with $r_m < r_1 \lor ... \lor r_k$ are equal to 0.

Proof. We use again the Picard sequence $(X^n)_{n\geq 0}$ defined by (12). For any $p\geq 2,\ n\geq 0,$ $X^n \in \mathbb{L}^p$ and (X^n) converges uniformly toward X in \mathbb{L}^p . As σ and b satisfy Assumption (H^{∞}) , using the same method as in the previous paragraph, we prove that $X_t^n \in \mathbb{D}^{1,p} \ \forall p \geq 1$ for any $t \geq 0$. By recurrence, we prove that $\forall t \geq 0, \, \forall n \geq 0 \ X_t^n \in \mathbb{D}^{\infty}$.

Let us fix T > 0.

 $\frac{\text{Recurrence Hypothesis }(h_n):}{(i)\ X_{i.t}^n\in\mathbb{D}^{\infty}},\,\forall t\in\left[0,T\right],\forall i=1,...,d.$

(ii)
$$\sup_{t \in [0,T]} \sum_{l_1,\dots,l_k=1}^{d'} E\left(\int_{([0,t]\times[0,1])^k} \left| D_{\lambda_k}^{l_1,\dots,l_k} X_{i,t}^n \right|^p d\lambda_k \right) < \infty \quad \forall p \ge 1, \forall k \ge 1.$$

(iii) the derivatives of order k have the following expression:

$$D_{\lambda_{k}}^{l_{1},..,l_{k}}X_{i,t}^{n+1} = \sum_{m=1}^{k} \sum_{l_{m},(l_{1},...l_{m-1},l_{m+1},...,l_{k})}^{n} \left((r_{m}, z_{m}), \hat{\lambda}_{m} \right) + \int_{r_{1}\vee...\vee r_{k}}^{t} \int_{0}^{1} \sum_{j=1}^{d'} \sum_{j,(l_{1},...,l_{k})}^{n,i} \left((s, \alpha), \lambda_{k} \right) W_{j} \left(d\alpha, ds \right) + \int_{r_{1}\vee...\vee r_{k}}^{t} \int_{0}^{1} \beta_{(l_{1},...,l_{k})}^{n,i} \left((s, \alpha), \lambda_{k} \right) d\alpha ds$$

$$(17)$$

if $t \geq r_1 \vee ... \vee r_k$ and $D_{\lambda_k}^{l_1,...,l_k} X_{i,t}^n = 0$ else, where Σ^n and β^n are defined as Σ and β replacing Xwith X^n .

Hypothesis (h_0) is satisfied.

Let us assume that Hypothesis (h_n) is true, and let us study (h_{n+1}) . According to Assumption (H^{∞}) and adapting the computation of the first derivative, it is easy to state that the two first properties are satisfied. We just check the expression of the k^{th} derivative by recurrence on k.

For k = 1, we have

$$\begin{split} D_{(r,z)}^{l}X_{i,t}^{n+1} & = & \Sigma_{l}^{n,i}\left((r,z)\right) + \int_{r}^{t}\int_{0}^{1}\sum_{j=1}^{d'}\Sigma_{j,(l)}^{n,i}\left((s,\alpha)\,,(r,z)\right)W_{j}\left(d\alpha,ds\right) \\ & + \int_{r}^{t}\int_{0}^{1}\beta_{(l)}^{n,i}\left((s,\alpha)\,,(r,z)\right)d\alpha ds \end{split}$$

then the expression (17) is satisfied.

We assume that the expression (17) of the k^{th} derivative is true, and we now compute the derivative of order k+1

$$D_{(r_{k+1},z_{k+1})}^{l_{k+1}}\left(D_{\lambda_{k}}^{l_{1},...,l_{k}}X_{i,t}^{n+1}\right) = D_{(r_{k+1},z_{k+1})}^{l_{k+1}}\left(\sum_{m=1}^{k}\sum_{l_{m},(l_{1},...l_{m-1},l_{m+1},...,l_{k})}^{n,i}\left(\left(r_{m},z_{m}\right),\hat{\lambda}_{m}\right)\right) \\ + \sum_{l_{k+1},(l_{1},...,l_{k})}^{n,i}\left(\left(r_{k+1},z_{k+1}\right),\lambda_{k}\right) \\ + \int_{r_{1}\vee...\vee r_{k}\vee r_{k+1}}^{t}\int_{0}^{1}\sum_{j=1}^{d'}D_{(r_{k+1},z_{k+1})}^{l_{k+1}}\left(\sum_{j,(l_{1},...,l_{k})}^{n,i}\left(\left(s,\alpha\right),\lambda_{k}\right)\right)W_{j}\left(d\alpha,ds\right) \\ + \int_{r_{1}\vee...\vee r_{k}\vee r_{k+1}}^{t}\int_{0}^{1}D_{(r_{k+1},z_{k+1})}^{l_{k+1}}\left(\beta_{(l_{1},...,l_{k})}^{n,i}\left(\left(s,\alpha\right),\lambda_{k}\right)\right)d\alpha ds$$

Using some elementary computations, we obtain

$$D_{(r_{k+1},z_{k+1})}^{l_{k+1}}\left(D_{\lambda_{k}}^{l_{1},...,l_{k}}X_{i,t}^{n+1}\right) = \sum_{m=1}^{k} \Sigma_{l_{m},(l_{1},...l_{m-1},l_{m+1},...,l_{k},l_{k+1})}^{n,i}\left(\left(r_{m},z_{m}\right),\hat{\lambda}_{m}\right) + \sum_{l_{k+1},(l_{1},...,l_{k})}^{n,i}\left(\left(r_{k+1},z_{k+1}\right),\hat{\lambda}_{k+1}\right) + \int_{r_{1}\vee...\vee r_{k+1}}^{t} \int_{0}^{1} \sum_{j=1}^{d'} \Sigma_{j,(l_{1},...,l_{k},l_{k+1})}^{n,i}\left(\left(s,\alpha\right),\lambda_{k}\right) W_{j}\left(d\alpha,ds\right) + \int_{r_{1}\vee...\vee r_{k+1}}^{t} \int_{0}^{1} \beta_{(l_{1},...,l_{k},l_{k+1})}^{n,i}\left(\left(s,\alpha\right),\lambda_{k}\right) d\alpha ds$$

So by recurrence, the property (iii) of (h_{n+1}) is proved and consequently for any $n \ge 0$ Recurrence Hypothesis (h_n) is satisfied.

Moreover, as in the computation of the first derivative, we have a stronger property than (ii) in (h_n) :

Lemma 13 If we denote by

$$S_{n,k}(t) = \sum_{\substack{l_1,\dots,l_k=1}}^{d'} E\left(\int_{([0,t]\times[0,1])^k} \left| D_{\lambda_k}^{l_1,\dots,l_k} X_t^n \right|^p d\lambda_k \right)$$

$$M_k = \sup_{0 \le q \le k} \sup_{n \ge 0} \sup_{t \in [0,T]} S_{n,q}(t)$$

then for any $k \geq 1$

$$M_k < \infty$$

Proof. The proof is similar to the proof of Lemma 10.

As (X^n) converges toward X in \mathbb{L}^p uniformly on [0,T] for any T>0, the process X satisfies the conditions of lemma 1.5.4 in [6]. Then, the theorem is proved.

3 Existence of a weak function-solution of the Landau equation

Under some suitable conditions on the function h, the Landau coefficients satisfy Assumption (H^1) (see Remark 8). Consequently, if X_0 belongs to \mathbb{L}^2 , the process X solution of $(NSDE(\sigma,b))$ is differentiable in the Malliavin sense. Let us now study the Malliavin matrix $I_t = \int_0^T \int_0^1 D_{(r,z)} X_t \cdot \left(D_{(r,z)} X_t\right)^* dz dr$ for any t > 0 to state the following theorem.

Theorem 14 Assume that X_0 is a \mathbb{R}^d -valued random vector with a finite 2-order moment. Let σ and b be the coefficients of the Landau equation defined respectively by (7), (2) and (4). We assume that σ and b are Lipschitz continuous of class C^1 . If the distribution of X_0 is not a Dirac mass and if we denote by (X,Y) the solution of the nonlinear stochastic differential equation

$$X_{t} = X_{0} + \int_{0}^{t} \int_{0}^{1} \sigma\left(X_{s} - Y_{s}\left(\alpha\right)\right).W^{d'}\left(d\alpha, ds\right) + \int_{0}^{t} \int_{0}^{1} b\left(X_{s} - Y_{s}\left(\alpha\right)\right) d\alpha ds \quad \left(NSDE\left(\sigma, b\right)\right)$$

then, for any t > 0 the distribution P_t of X_t is absolutely continuous with respect the Lebesgue measure.

Corollary 15 Let P_0 be a probability measure such that $\int |x|^2 P_0(dx) < \infty$. Let σ and b be the coefficients of the Landau equation defined respectively by (7), (2) and (4). We assume that σ and b are Lipschitz continuous of class C^1 . If P_0 is not a Dirac measure, there exists a unique weak function-solution of the Landau equation with initial data P_0 .

Proof. (Corollary 15)

Let X_0 be a random vector with distribution P_0 and X be a solution of $(NSDE(\sigma, b))$ with initial data X_0 . If we denote by f_t the density of the distribution of X_t , then, using Itô's Formula, the function f, defined by $f(x,t) = f_t(x)$ for t > 0, is a weak function solution of the Landau equation (5) with initial data P_0 .

The uniqueness is given by Corollary 7. ■

Remark 16 Without any restriction, we can assume that $\mathbf{E}\left[\mathbf{X_0}\right] = \mathbf{0}$ to simplify the computations.

Proof. (Remark 16)

By conservation of momentum, if we define for any $t \ge 0$, $X'_t = X_t - E[X_0]$, the expectation of X' is equal to 0 and X' satisfies the following equation

$$X_{t}' = X_{0}' + \int_{0}^{t} \int_{0}^{1} \sigma\left(X_{s}' - Y_{s}'\left(\alpha\right)\right) . W^{d'}\left(d\alpha, ds\right) + \int_{0}^{t} \int_{0}^{1} b\left(X_{s}' - Y_{s}'\left(\alpha\right)\right) d\alpha ds$$

with $Y'_{s}(\alpha) = Y_{s}(\alpha) - E[X_{0}]$.

As
$$\mathcal{L}(X) = \mathcal{L}_{\alpha}(Y)$$
, we also have $\mathcal{L}(X') = \mathcal{L}_{\alpha}(Y')$.

If we prove that the distribution of X_t' has a density f_t' with respect the Lebesgue measure, then X_t has a density given by $f_t(z) = f_t'(z - E[X_0])$.

Proof. (Theorem 14)

We recall the expression of the first Malliavin derivative at point $(r,z) \in [0,\infty) \times [0,1]$ of X:

$$\begin{split} D_{(r,z)}^{l}X_{i,t} &= \sigma_{i,l}\left(X_{r} - Y_{r}\left(z\right)\right) \\ &+ \int_{r}^{t} \int_{0}^{1} \sum_{k=1}^{d'} \sum_{m=1}^{d} \partial_{m}\sigma_{i,k}\left(X_{s} - Y_{s}\left(\alpha\right)\right) D_{(r,z)}^{l}X_{m,s}W_{k}\left(d\alpha,ds\right) \\ &+ \int_{r}^{t} \int_{0}^{1} \sum_{m=1}^{d} \partial_{m}b_{i}\left(X_{s} - Y_{s}\left(\alpha\right)\right) D_{(r,z)}^{l}X_{m,s}d\alpha ds \end{split}$$

if $t \geq r$ and $D_{(r,z)}^l X_{i,t} = 0$ else.

We fix $(r,z) \in [0,\infty) \times [0,1]$ and we define

$$S_k(.) = (\partial_m \sigma_{i,k}(.))_{1 \le i,m \le d}$$

 $B(.) = (\partial_m b_i(.))_{1 < i,m < d}$

Thus we give a matricial expression of the derivative of X

$$D_{(r,z)}X_{t} \underset{\text{if } t \geq r}{=} \sigma\left(X_{r} - Y_{r}\left(z\right)\right) + \int_{r}^{t} \int_{0}^{1} \sum_{k=1}^{d'} S_{k}\left(X_{s} - Y_{s}\left(\alpha\right)\right) . D_{(r,z)}X_{s}W_{k}\left(d\alpha, ds\right)$$

$$+ \int_{r}^{t} \int_{0}^{1} B\left(X_{s} - Y_{s}\left(\alpha\right)\right) . D_{(r,z)}X_{s}d\alpha ds$$

$$D_{(r,z)}X_{t} \underset{\text{if } t < r}{=} 0$$

Let us define the semimartingale Z^r , for any $t \geq r$,

$$Z_{t}^{r} = \int_{r}^{t} \int_{0}^{1} \sum_{k=1}^{d'} S_{k} \left(X_{s} - Y_{s} \left(\alpha \right) \right) W_{k} \left(d\alpha, ds \right) + \int_{r}^{t} \int_{0}^{1} B \left(X_{s} - Y_{s} \left(\alpha \right) \right) d\alpha ds$$

As S and B are bounded, $(Z_t^r)_{t\geq r}$ is a continuous semimartingale and the first derivative satisfies the equation

$$D_{(r,z)}X_{t} = \sigma (X_{r} - Y_{r}(z)) + \int_{r}^{t} dZ_{s}^{r}.D_{(r,z)}X_{s}$$
(18)

Using the results of [4], there is a unique solution of (18) defined almost surely, for any $t \ge r$ by

$$D_{(r,z)}X_t = \mathcal{E}(Z)_t^r . \sigma(X_r - Y_r(z))$$

with $\mathcal{E}(Z)_t^r$ invertible for any $t \geq r$.

We fix now t > 0.

We want to apply Theorem (a), thus study if the Malliavin matrix I_t is invertible a.s..

$$\begin{split} I_t &= \int_0^\infty \int_0^1 D_{(r,z)} X_t \cdot \left(D_{(r,z)} X_t \right)^* dr dz \\ &= \int_0^t \int_0^1 D_{(r,z)} X_t \cdot \left(D_{(r,z)} X_t \right)^* dr dz \\ &= \int_0^t \int_0^1 \mathcal{E} \left(Z \right)_t^r \cdot \sigma \left(X_r - Y_r \left(z \right) \right) \cdot \sigma^* \left(X_r - Y_r \left(z \right) \right) \cdot \left(\mathcal{E} \left(Z \right)_t^r \right)^* dr dz \\ &= \int_0^t \mathcal{E} \left(Z \right)_t^r \cdot \left(\int_0^1 a \left(X_r - Y_r \left(z \right) \right) dz \right) \cdot \left(\mathcal{E} \left(Z \right)_t^r \right)^* dr \end{split}$$

 I_t is a nonnegative symmetric matrix, then I_t is invertible if and only if $V^*.I_t.V > 0$ for any $V \in \mathbb{R}^d \setminus \{0\}$.

We define $\Gamma_r = \int_0^1 a \left(X_r - Y_r \left(z \right) \right) dz$.

We prove the theorem by contradiction.

Assumption: let us suppose that I_t is not "invertible a.s.".

Then, there exists a subset $\Omega_1 \subset \Omega$, $\mathbb{P}(\Omega_1) > 0$, such that $\forall \omega \in \Omega_1 \ I_t(\omega)$ is not invertible.

Let Ω_2 be such that $\mathbb{P}(\Omega_2) = 1$ and $\forall \omega \in \Omega_2 \ \forall r \leq t, \ \mathcal{E}(Z)_t^r(\omega)$ is invertible.

We define $\Omega_0 = \Omega_1 \cap \Omega_2$, and we notice that $\mathbb{P}(\Omega_0) > 0$.

We fix $\omega \in \Omega_0$.

As $I_{t}\left(\omega\right)$ is not invertible, there exists a vector $V_{\omega}\in\mathbb{R}^{d}\setminus\{0\}$ such that

$$V_{\omega}^{*}.I_{t}(\omega).V_{\omega} = \int_{0}^{t} V_{\omega}^{*}.\mathcal{E}(Z)_{t}^{r}(\omega).\Gamma_{r}(\omega).(\mathcal{E}(Z)_{t}^{r}(\omega))^{*}.V_{\omega}dr$$
$$= 0$$

As for any $r \leq t$, $\mathcal{E}(Z)_t^r(\omega) \cdot \Gamma_r(\omega) \cdot (\mathcal{E}(Z)_t^r(\omega))^*$ is a nonnegative symmetric matrix, we notice that

$$V_{\omega}^* \mathcal{E}(Z)_t^r(\omega) \cdot \Gamma_r(\omega) \cdot (\mathcal{E}(Z)_t^r(\omega))^* \cdot V_{\omega} \geq 0$$

Then, on a subset J_{ω} of full measure in [0,t], $V_{\omega}^* \cdot \mathcal{E}(Z)_t^r(\omega) \cdot \Gamma_r(\omega) \cdot (\mathcal{E}(Z)_t^r(\omega))^* \cdot V_{\omega} = 0$. This implies that $\forall r \in J_{\omega}$, $\mathcal{E}(Z)_t^r(\omega) \cdot \Gamma_r(\omega) \cdot (\mathcal{E}(Z)_t^r(\omega))^*$ is a non invertible matrix. However, since $\Omega_0 \subset \Omega_2$, $\mathcal{E}(Z)_t^r(\omega)$ is invertible for any $r \leq t$, and consequently $\Gamma_r(\omega)$ is not invertible for $r \in J_{\omega}$. Let us now study if the situation " $\Gamma_r(\omega)$ non invertible for almost all r" is possible.

Using Lebesgue's Theorem, we notice that the mapping $r \to \Gamma_r(\omega)$ is continuous. Consequently, $\Gamma_r(\omega)$ non invertible for almost all r implies that $\Gamma_r(\omega)$ is non invertible for any $r \in [0,t]$. Let $V = (V_i)_{1 \le i \le d}$ be a vector in $\mathbb{R}^d \setminus \{0\}$,

$$V^{*}.\Gamma_{r}\left(\omega\right).V = \int_{0}^{1}h\left(\left|X_{r}\left(\omega\right)-Y_{r}\left(z\right)\right|^{2}\right)\left[\left|V\right|^{2}\left|X_{r}\left(\omega\right)-Y_{r}\left(z\right)\right|^{2}-\left(\sum_{i=1}^{d}V_{i}\left(X_{i,r}\left(\omega\right)-Y_{i,r}\left(z\right)\right)\right)^{2}\right]dz$$

$$\geq m\left[\left|V\right|^{2}\left|X_{r}\left(\omega\right)\right|^{2}-\left(\sum_{i=1}^{d}V_{i}X_{i,r}\left(\omega\right)\right)^{2}+\left|V\right|^{2}E\left|X_{r}\right|^{2}-\sum_{i=1}^{d}V_{i}^{2}E\left[X_{i,r}^{2}\right]+\sum_{i\neq j}V_{i}V_{j}E\left[X_{i,r}X_{j,r}\right]\right]$$
using the lower bound (3) of h , $E\left[X_{t}\right]=0$ and $\mathcal{L}\left(X_{t}\right)=\mathcal{L}_{\alpha}\left(Y_{t}\right) \ \forall t\geq0$

Using Cauchy-Schwarz's inequality, we notice that $|V|^2 |X_r(\omega)|^2 - \left(\sum_{i=1}^d V_i X_{i,r}(\omega)\right)^2 \ge 0$. Then,

$$V^*.\Gamma_r(\omega).V \ge m \left(E\left[|X_r|^2 \right] |V|^2 - \sum_{i=1}^d V_i^2 E\left[X_{i,r}^2 \right] - \sum_{i \ne j} V_i V_j E\left[X_{i,r} X_{j,r} \right] \right)$$
(19)

 $\Gamma_r(\omega)$ non invertible means that for any $r \in [0,t]$ there exists $V_r(\omega) \in \mathbb{R}^d \setminus \{0\}$ such that $V_r(\omega)^* \cdot \Gamma_r(\omega) \cdot V_r(\omega) = 0$. Nevertheless, using expression (19), this implies that there is equality in Cauchy-Schwarz, i.e. for any i, j such that $V_{i,r}(\omega) \neq 0$ and $V_{j,r}(\omega) \neq 0$

$$E[X_{i,r}X_{j,r}]^{2} = E[X_{i,r}^{2}] E[X_{j,r}^{2}]$$
(20)

We notice that the equality in Cauchy-Schwarz (20) is in fact satisfied for any $i, j \in \{1, ..., d\}$. Indeed, if one of the components of $V_r(\omega)$ is equal to 0, for example $V_{1,r}(\omega) = 0$, then

$$\begin{split} V_{r}\left(\omega\right)^{*}.\Gamma_{r}\left(\omega\right).V_{r}\left(\omega\right) & \geq & m\left[E\left[\left|X_{r}\right|^{2}\right]\left|V_{r}\left(\omega\right)\right|^{2} - \left(\sum_{i=1}^{d}\left|V_{i,r}\left(\omega\right)\right|\sqrt{E\left[X_{i,r}^{2}\right]}\right)^{2}\right] \\ & = & m\left[E\left[\left(X_{1,r}\right)^{2}\right]\left|V_{r}\left(\omega\right)\right|^{2} + \left|V_{r}\left(\omega\right)\right|^{2}\sum_{i=2}^{d}E\left[\left(X_{i,r}\right)^{2}\right] - \left(\sum_{i=2}^{d}\left|V_{i,r}\left(\omega\right)\right|\sqrt{E\left[X_{i,r}^{2}\right]}\right)^{2}\right] \\ & \geq & mE\left[\left(X_{1,r}\right)^{2}\right]\left|V_{r}\left(\omega\right)\right|^{2} \end{split}$$

As $V_r(\omega)^* \cdot \Gamma_r(\omega) \cdot V_r(\omega) = 0$ and $|V_r(\omega)| \neq 0$, $E\left[(X_{1,r})^2\right] = 0$. Consequently, for any j, we still have $E\left[X_{1,r}X_{j,r}\right]^2 = E\left[X_{1,r}^2\right]E\left[X_{j,r}^2\right]$.

Finally, for any $r \in [0, t]$, there exists a vector $\lambda_r \in \mathbb{R}^d$ and a real-valued random variable U_r such that, for any $\omega \in \Omega$,

$$X_r(\omega) = U_r(\omega) \lambda_r \tag{21}$$

As $E[|X_0|^2] \neq 0$ (the distribution of X_0 is not a Dirac mass), using the conservation of energy, $X_r \neq 0$ a.s., then $\lambda_r \neq 0$ and $U_r \neq 0$ a.s.. We can suppose $|\lambda_r| = 1$ for any $r \geq 0$. Then, by conservation of momentum and energy, we notice that $E[U_r] = 0$ and $E[U_r^2] = E|X_0|^2$.

The distribution of a solution of $(NSDE(\sigma, b))$ is a measure-solution of the Landau equation (6). Then, we will now study if the distribution of a process defined by (21) can be a solution of the Landau equation. We denote by Q the distribution of U and by Q_t the distribution on \mathbb{R} of U_t . Using (21), the equation (6) writes

$$\frac{d}{dt} \int_{\mathbb{R}} \varphi(\lambda_{t}x) Q_{t}(dx) = \frac{1}{2} \sum_{i,j=1}^{d} \int_{\mathbb{R} \times \mathbb{R}} a_{ij} (\lambda_{t}(x-y)) \partial_{ij} \varphi(\lambda_{t}x) Q_{t}(dx) Q_{t}(dy)
+ \sum_{i=1}^{d} \int_{\mathbb{R} \times \mathbb{R}} b_{i} (\lambda_{t}(x-y)) \partial_{i} \varphi(\lambda_{t}x) Q_{t}(dx) Q_{t}(dy)$$

for any test function $\varphi \in \mathcal{C}_b^2(\mathbb{R}^d, \mathbb{R})$.

As $|\lambda_t| = 1$, for $i, j \in \{1, ..., d\}$

$$a_{ij} (\lambda_t (x - y)) = (x - y)^2 h ((x - y)^2) (\delta_{ij} - \lambda_{i,t} \lambda_{j,t})$$

 $b_i (\lambda_t (x - y)) = -(d - 1) (x - y) h ((x - y)^2) \lambda_{i,t}$

Then,

$$\frac{d}{dt} \int_{\mathbb{R}} \varphi(\lambda_t x) Q_t(dx) = \frac{1}{2} \sum_{i,j=1}^d (\delta_{ij} - \lambda_{i,t} \lambda_{j,t}) \int_{\mathbb{R} \times \mathbb{R}} (x - y)^2 h\left((x - y)^2\right) \partial_{ij} \varphi(\lambda_t x) Q_t(dx) Q_t(dy)
- (d - 1) \sum_{i=1}^d \lambda_{i,t} \int_{\mathbb{R} \times \mathbb{R}} (x - y) h\left((x - y)^2\right) \partial_i \varphi(\lambda_t x) Q_t(dx) Q_t(dy)$$

We now explicit the equation satisfied by the 2-order moments of X: let $k, l \in \mathbb{N}, k \neq l$. Using $\varphi(v) = v_k^2 \text{ or } \varphi(v) = v_k v_l, v \in \mathbb{R}^d$, we obtain

$$\frac{d}{dt} \int_{\mathbb{R}} \lambda_{k,t}^2 x^2 Q_t (dx) = E \left[|X_0|^2 \right] \frac{d}{dt} \lambda_{k,t}^2$$

$$= \left(1 - d\lambda_{k,t}^2 \right) \int_{\mathbb{R} \times \mathbb{R}} (x - y)^2 h \left((x - y)^2 \right) Q_t (dx) Q_t (dy)$$

$$\frac{d}{dt} \int_{\mathbb{R}} \lambda_{k,t} \lambda_{l,t} x^2 Q_t (dx) = E \left[|X_0|^2 \right] \frac{d}{dt} \lambda_{k,t} \lambda_{l,t}$$

$$= -d\lambda_{k,t} \lambda_{l,t} \int_{\mathbb{R} \times \mathbb{R}} (x - y)^2 h \left((x - y)^2 \right) Q_t (dx) Q_t (dy)$$

Let us define $f(t) = \int_{\mathbb{R} \times \mathbb{R}} (x - y)^2 h\left((x - y)^2\right) Q_t(dx) Q_t(dy)$. As h satisfies (3) and $E\left[\left|X_0\right|^2\right] \neq 0$ 0, for any $t \ge 0$, we notice that f(t) > 0. Let us now compute $\frac{d}{dt} \left(\lambda_{k,t}^2 \lambda_{l,t}^2 \right)$, using two different ways:

$$E[|X_{0}|^{2}] \frac{d}{dt} (\lambda_{k,t}^{2} \lambda_{l,t}^{2}) = \lambda_{k,t}^{2} E[|X_{0}|^{2}] \frac{d}{dt} \lambda_{l,t}^{2} + \lambda_{l,t}^{2} E[|X_{0}|^{2}] \frac{d}{dt} \lambda_{k,t}^{2}$$

$$= \lambda_{k,t}^{2} f(t) + \lambda_{l,t}^{2} f(t) - 2d\lambda_{k,t}^{2} \lambda_{l,t}^{2} f(t)$$

$$E[|X_{0}|^{2}] \frac{d}{dt} (\lambda_{k,t}^{2} \lambda_{l,t}^{2}) = 2\lambda_{k,t} \lambda_{l,t} E[|X_{0}|^{2}] \frac{d}{dt} (\lambda_{k,t} \lambda_{l,t})$$

$$= -2d\lambda_{k,t}^{2} \lambda_{l,t}^{2} f(t)$$

Then $\lambda_t = 0$, consequently $X_t = 0$ which is impossible.

Finally, I_t is invertible a.s. for any t > 0 and according to theorem (a), the theorem is proved.

Remark 17 We notice that the matrix $\Gamma_r = \int_0^1 a(X_r - Y_r(z)) dz$ is invertible a.s., whereas $\det(a(X_r - Y_r(z))) = 0$ for any r, z. In fact, thanks to the nonlinearity of equation (NSDE (σ, b)), we can conclude that the Malliavin matrix has an inverse a.s..

Remark 18 A consequence of Theorem 14 is, for any $i, j \in \{1, ..., d\}$, $i \neq j$, for any t > 0

$$E[X_{i,t}X_{j,t}]^2 < E[X_{i,t}^2] E[X_{j,t}^2]$$

if the random vector X_0 is not a constant.

4 Regularity of the weak function-solution

Theorem 19 Let X_0 be a random vector such that $E[|X_0|^p] < \infty$ for any $p \ge 1$. Let σ and b be the coefficients of the Landau equation respectively defined by (7), (2) and (4). We assume that σ and b are Lipschitz continuous and infinitely differentiable with bounded derivatives. If the distribution of X_0 is not a Dirac mass and if we denote by X the solution of the nonlinear stochastic differential equation

$$X_{t} = X_{0} + \int_{0}^{t} \int_{0}^{1} \sigma\left(X_{s} - Y_{s}\left(\alpha\right)\right) . W^{d'}\left(d\alpha, ds\right) + \int_{0}^{t} \int_{0}^{1} b\left(X_{s} - Y_{s}\left(\alpha\right)\right) d\alpha ds \quad \left(NSDE\left(\sigma, b\right)\right)$$

then for any t > 0 the distribution of X_t has a density of class C^{∞} with respect the Lebesgue measure on \mathbb{R}^d .

Corollary 20 Let P_0 be a probability measure such that $\int |x|^p P_0(dx) < \infty$ for any $p \ge 1$. Let σ and b be the coefficients of the Landau equation defined respectively by (7), (2) and (4). We assume that σ and b are Lipschitz continuous and infinitely differentiable with bounded derivatives. If P_0 is not a Dirac measure, there exists a unique weak function solution of the Landau equation of class C^∞ with initial data P_0 .

Remark 21 Using the expressions (10) or (11), we notice that, if h is a bounded function of class C^{∞} such that $h^{(l)}(x) = O\left(\frac{1}{x^{l+1}}\right)$ when $x \to +\infty$ for any $l \ge 1$, σ and b are Lipschitz continuous functions of class C^{∞} with bounded derivatives.

Proof. As in the previous part, we assume that $E[X_0] = 0$ to simplify the computations. As σ and b satisfy Assumption (H^{∞}) , the process X is infinitely differentiable in the Malliavin sense. We need to study the moments of the inverse of the determinant of the Malliavin matrix I_t at time t, for any t > 0, to apply Theorem (b). The expression of the determinant is complex, nevertheless we can notice that in dimension d,

$$(\det I_t)^{1/d} \ge \inf_{|V|=1} \langle I_t V, V \rangle$$

where $\langle ., . \rangle$ is the euclidean scalar product in \mathbb{R}^d .

Moreover, see P. L. Morien [5] lemma 10.5.1, the property (ii) of theorem (b) is satisfied as soon as for any $k \in \mathbb{N}$

$$\lim_{\varepsilon \to 0} \varepsilon^{-k} \mathbb{P}\left((\det I_t)^{1/d} < c\varepsilon \right) = 0 \tag{22}$$

where c is a positive constant which will be computed later. Indeed, let us fix $p \ge 1$ and $k \in \mathbb{N}$ such that k > d(p+1). If (22) is satisfied, there exists $\varepsilon_0 > 0$ such that $\varepsilon^{-k} \mathbb{P}\left(\left(\det I_t\right)^{1/d} < c\varepsilon\right) < 1$ for any $\varepsilon < \varepsilon_0$. Let $m_0 \in \mathbb{N}$ such that $\forall m > m_0, \frac{1}{m} < (c\varepsilon_0)^d$, then

$$E\left[\frac{1}{(\det I_t)^p}\right] \leq 1 + \sum_{m=1}^{\infty} (m+1)^p \mathbb{P}\left(m \leq \frac{1}{\det I_t} \leq m+1\right)$$

$$\leq 1 + 2^p \sum_{m=1}^{\infty} m^p \mathbb{P}\left(\det I_t \leq \frac{1}{m}\right)$$

$$\leq 1 + 2^p \sum_{m=1}^{m_0} m^p \mathbb{P}\left(\det I_t \leq \frac{1}{m}\right) + 2^p c^{-k} \sum_{m=m_0+1}^{\infty} \frac{1}{m^{\frac{k}{d}-p}}$$

since $\frac{k}{d} - p > 1$, we obtain $E\left[\frac{1}{(\det I_t)^p}\right] < \infty$.

Let t > 0 be fixed.

As $(\det I_t)^{\frac{1}{d}} \ge \inf_{|V|=1} \langle I_t V, V \rangle$, we want to find a lower bound for $\inf_{|V|=1} \langle I_t V, V \rangle$. Let ε be such that $0 < \varepsilon < \frac{t}{2}$. We consider $V = (V_i)_{1 < i < d} \in \mathbb{R}^d$ such that |V| = 1.

$$\begin{split} \langle I_t V, V \rangle &= \int_0^t \int_0^1 \sum_{l=1}^{d'} \left(\sum_{i=1}^d D_{r,z}^l X_{i,t} V_i \right)^2 dz dr \\ &\geq \int_{t-\varepsilon}^t \int_0^1 \sum_{l=1}^{d'} \left(\sum_{i=1}^d D_{r,z}^l X_{i,t} V_i \right)^2 dz dr \\ &\geq \frac{2}{3} I_1 - 2I_2 \end{split}$$

with

$$\begin{split} I_{1} &= \int_{t-\varepsilon}^{t} \int_{0}^{1} \sum_{l=1}^{d'} \left(\sum_{i=1}^{d} \sigma_{i,l} \left(X_{r} - Y_{r} \left(z \right) \right) V_{i} \right)^{2} dz dr \\ I_{2} &= \int_{t-\varepsilon}^{t} \int_{0}^{1} \sum_{l=1}^{d'} \left[\sum_{i=1}^{d} V_{i} \int_{r}^{t} \int_{0}^{1} \sum_{k=1}^{d'} \sum_{m=1}^{d} \partial_{m} \sigma_{i,k} \left(X_{s} - Y_{s} \left(\alpha \right) \right) D_{(r,z)}^{l} X_{m,s} W_{k} \left(d\alpha, ds \right) \right. \\ &+ \sum_{i=1}^{d} V_{i} \int_{r}^{t} \int_{0}^{1} \sum_{m=1}^{d} \partial_{m} b_{i} \left(X_{s} - Y_{s} \left(\alpha \right) \right) D_{(r,z)}^{l} X_{m,s} d\alpha ds \bigg]^{2} dz dr \end{split}$$

Then

$$\inf_{|V|=1} \langle I_t V, V \rangle \ge \frac{2}{3} \inf_{|V|=1} I_1 - 2 \sup_{|V|=1} I_2$$

We want to minimize the first integral:

$$\begin{split} I_1 &= \int_{t-\varepsilon}^t \int_0^1 \sum_{l=1}^{d'} \left(\sum_{i=1}^d \sigma_{i,l} \left(X_r - Y_r \left(z \right) \right) V_i \right)^2 dz dr \\ &= \int_{t-\varepsilon}^t \int_0^1 \sum_{i,j=1}^d \sum_{l=1}^{d'} \sigma_{i,l} \left(X_r - Y_r \left(z \right) \right) \sigma_{j,l} \left(X_r - Y_r \left(z \right) \right) V_i V_j dz dr \\ &= \int_{t-\varepsilon}^t \int_0^1 \sum_{i,j=1}^d a_{i,j} \left(X_r - Y_r \left(z \right) \right) V_i V_j dz dr \\ &= \int_{t-\varepsilon}^t V^* . \Gamma_r . V dr \end{split}$$

Using the results of Section 3, we obtain

$$I_1 \ge m \int_{t-\varepsilon}^{t} \left(E\left[|X_r|^2 \right] |V|^2 - \sum_{i=1}^{d} V_i^2 E\left[X_{i,r}^2 \right] - \sum_{i \ne j} V_i V_j E\left[X_{i,r} X_{j,r} \right] \right) dr$$

We define the function

$$f(V,r) = E[|X_r|^2]|V|^2 - \sum_{i=1}^{d} V_i^2 E[X_{i,r}^2] - \sum_{i \neq i} V_i V_j E[X_{i,r} X_{j,r}]$$

We notice that f is a positive continuous function (see Remark 18) on the compact subset $D=\left\{V\in\mathbb{R}^d:|V|=1\right\}\cup\left\{r:\frac{t}{2}\leq r\leq t\right\}$, then f reaches its minimum. So, if we denote by

$$\tilde{c} = \inf \left\{ f\left(V, r\right) : |V| = 1 \text{ and } \frac{t}{2} \le r \le t \right\}$$

we notice that \tilde{c} is independent of $\omega \in \Omega$, $\tilde{c} > 0$ and

$$I_1 > m.\tilde{c}.\varepsilon$$

Let us now study $E\left[\sup_{|V|=1}I_2^{\ p}\right]$ for $p\geq 1$.

$$I_{2} = \int_{t-\varepsilon}^{t} \int_{0}^{1} \sum_{l=1}^{d'} \left[\sum_{i=1}^{d} V_{i} \int_{r}^{t} \int_{0}^{1} \sum_{k=1}^{d'} \sum_{m=1}^{d} \partial_{m} \sigma_{i,k} \left(X_{s} - Y_{s} \left(\alpha \right) \right) D_{(r,z)}^{l} X_{m,s} W_{k} \left(d\alpha, ds \right) \right.$$

$$\left. + \sum_{i=1}^{d} V_{i} \int_{r}^{t} \int_{0}^{1} \sum_{m=1}^{d} \partial_{m} b_{i} \left(X_{s} - Y_{s} \left(\alpha \right) \right) D_{(r,z)}^{l} X_{m,s} d\alpha ds \right]^{2} dz dr$$

Using Burkholder-Davis-Gundy's and Hölder's inequalities, and the fact that |V|=1, we notice that

$$E\left[\sup_{|V|=1}I_{2}^{p}\right] \leq K\varepsilon^{p-1}\left\{\int_{t-\varepsilon}^{t}\int_{0}^{1}\sum_{l,i,m}E\left[\left|\sum_{k=1}^{d'}\int_{r}^{t}\int_{0}^{1}\partial_{m}\sigma_{i,k}\left(X_{s}-Y_{s}\left(\alpha\right)\right)D_{(r,z)}^{l}X_{m,s}W_{k}\left(d\alpha,ds\right)\right|^{2p}\right]dzdr + \int_{t-\varepsilon}^{t}\int_{0}^{1}\sum_{l,i,m}E\left[\left|\int_{r}^{t}\partial_{m}b_{i}\left(X_{s}-Y_{s}\left(\alpha\right)\right)D_{(r,z)}^{l}X_{m,s}d\alpha ds\right|^{2p}\right]dzdr\right\}$$

$$\leq K\varepsilon^{p-1}\left\{\int_{t-\varepsilon}^{t}\int_{0}^{1}\sum_{l,i,k,m}E\left[\left|\sum_{k=1}^{d'}\int_{r}^{t}\int_{0}^{1}\left(\partial_{m}\sigma_{i,k}\left(X_{s}-Y_{s}\left(\alpha\right)\right)D_{(r,z)}^{l}X_{m,s}\right)^{2}d\alpha ds\right|^{p}\right]dzdr + \int_{t-\varepsilon}^{t}\int_{0}^{1}\varepsilon^{2p-1}\sum_{l,i,m}E\left[\left|\int_{r}^{t}\partial_{m}b_{i}\left(X_{s}-Y_{s}\left(\alpha\right)\right)D_{(r,z)}^{l}X_{m,s}d\alpha ds\right|^{2p}\right]dzdr\right\}$$

As the derivatives of σ and b are bounded, using Hölder's inequality, we obtain

$$E\left[\sup_{|V|=1}I_{2}^{p}\right] \leq K\varepsilon^{2p-2}\left\{\int_{t-\varepsilon}^{t}\int_{0}^{1}\sum_{l}E\left[\int_{r}^{t}\left|D_{(r,z)}^{l}X_{s}\right|^{2p}ds\right]dzdr\right\}$$
using Fubini's Theorem
$$\leq K\varepsilon^{2p-2}\int_{r}^{t}E\left[\int_{t-\varepsilon}^{s}\int_{0}^{1}\left|D_{(r,z)}X_{s}\right|^{2p}dzdr\right]ds$$

Then, for any $p \ge 2$ there exists a constant K = K(p, d, d', t) such that

$$E\left[\sup_{|V|=1}I_2^p\right] \le K\varepsilon^{2p-1}\sup_{0 \le s \le t} E\left[\int_0^s \int_0^1 \left|D_{(r,z)}X_s\right|^{2p} dz dr\right]$$

Let us now check that $\lim_{\varepsilon \to 0} \varepsilon^{-k} \mathbb{P}\left((\det I_t)^{\frac{1}{d}} < c\varepsilon \right) = 0$, where $k \in \mathbb{N}$ is fixed and $c = \frac{1}{3}m\tilde{c}$ with \tilde{c} the constant built in the study of the first integral I_1 .

Let $p \in \mathbb{N}$ such that p > k + 1.

$$\begin{split} \mathbb{P}\left(\left(\det I_{t}\right)^{\frac{1}{d}} < c\varepsilon\right) & \leq & \mathbb{P}\left(\inf_{|V|=1}\langle I_{t}V, V\rangle < c\varepsilon\right) \\ & \leq & \mathbb{P}\left(\frac{2}{3}\inf_{|V|=1}I_{1} - 2\sup_{|V|=1}I_{2} < c\varepsilon\right) \\ & \leq & \mathbb{P}\left(\sup_{|V|=1}I_{2} > \frac{c\varepsilon}{2}\right) \\ & \text{using Tchebychev's Inequality} \\ & \leq & \left(\frac{2}{c}\right)^{p}\varepsilon^{-p}E\left[\sup_{|V|=1}I_{2}^{p}\right] \\ & < & K\varepsilon^{p-1} \end{split}$$

Then, $\lim_{\varepsilon \to 0} \varepsilon^{-k} \mathbb{P}\left((\det I_t)^{\frac{1}{d}} < c\varepsilon \right) = 0$ and we can apply Theorem (b). So the theorem is proved. \blacksquare

References

- [1] V. Bally, E. Pardoux, Malliavin calculus for white noise driven parabolic SPDEs, Potential Analysis 9: 27-64 (1998)
- [2] A. G. Bhatt, R. L. Karandikar, Invariant measures and evolution equations for Markov processes characterized via martingale problems, The Ann. of Prob 21: 2246-2268 (1993)
- [3] H. Guérin, Solving Landau equation for some soft potentials with a probabilistic approach, Prépublication de l'Univ. Paris 10 **00/12** (2000)
- [4] J. Jacod, Equations différentielles stochastiques linéaires : la méthode de variation des constantes, Séminaire de Proba. XVI, Lecture Notes in Math. **920** : 442-448 (1982)
- [5] P. L. Morien, Autour des équations aux dérivées partielles stochastiques: systèmes en interaction et problème non-linéaire, régularité et approximation des densités, Thèse de Doctorat de l'Univ. Paris 6 (1996)
- [6] D. Nualart, The Malliavin calculus and related topics, Springer-Verlag (1995)
- [7] C. Villani, On the spatially homogeneous Landau equation for Maxwellian Molecules, Math. Mod. Meth. Appl. Sci. 8: 957-983 (1998)
- [8] J. B. Walsh, An introduction to the stochastic partial differential equations, Ecole d'été de Proba. de Saint Flour XIV, Lecture Notes in Math. 1180 : 265-437 (1984)