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Abstract

In the present paper, we firstly extend the probabilistic interpretation of spatially
homogeneous Boltzmann equations without angular cutoff due firstly to Tanaka and
generalized by Fournier-Méléard, to some soft potential cases for a large class of initial
data. We relate a measure solution of the Boltzmann equation to the solution of
a Poisson-driven stochastic differential equation. Then we consider renormalized such
equations which make prevail the grazing collisions, and we prove the convergence of the
associated Boltzmann processes to a process related to the Landau equation initially
introduced by Guérin. The convergence is pathwise and also implies a convergence
at the level of the partial differential equations. An approximation of a solution of
the Landau equation with soft potential via colliding stochastic particle systems is
derived from this result. We then deduce a Monte-Carlo algorithm of simulation by a
conservative particle method following the asymptotics of grazing collisions. Numerical
results are given.

Key words : Boltzmann equations without cutoff and soft potential, Landau equation
with soft potential, Nonlinear stochastic differential equations, Interacting particle sys-
tems, Monte-Carlo algorithm.
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1 Introduction.

The spatially homogeneous Boltzmann equation deals with the distribution of the velocities
P,(dv) at the instant ¢, in a rarefied gas. In the Maxwell molecules case and with L!-
hypotheses, Tanaka [24] built a process V;, which can be seen as the velocity of the ”mean
particle”, of which the law is given by P;(dv). Horowitz, Karandikar [18] generalized this
approach to the L?-case. This probabilistic representation has proved very usefull. Firstly,
it did allow to extend the work of Graham, Méléard, [14] concerning numerical Monte-Carlo
methods for Boltzmann equations with cutoff, to the case of Boltzmann equations without
cutoff, see Desvillettes, Graham, Méléard, [7], and Fournier, Méléard, [12]. Secondly, the
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use of recent tools of stochastic analysis did allow to prove, via Tanaka’s representation,
the existence of positive smooth solutions to the Boltzmann equation, at least in dimen-
sion two, hence generalizing the analytical results, see the works of Graham, Méléard, [15],
Fournier [9)].

In 1936, Landau, [20], derived from the Boltzmann equation a new equation called the
Fokker-Planck-Landau equation, usually considered as an approximation of the homoge-
neous Boltzmann equation in the limit of grazing collisions. Many authors have been inter-
ested in proving rigourously this convergence, in different cases of scaterring cross-section
and initial data.

Firstly Arsen’ev and Buryak [1] proved the convergence of solutions of the Bolzmann equa-
tion towards solutions of the Landau equation under very restrictive assumptions. Then,
Desvillettes [5] gave a mathematical framework for more physical situations, but excluding
the main case of Coulomb potential which has been studied by Degond and Lucquin, [4].
Indeed, the Boltzmann equation is not realistic for Coulomb molecules (see [26]) and the
Landau equation appears naturally. More recently, Goudon [13] and Villani [26] proved the
existence of a solution of the Landau equation for soft potentials using the convergence of
the Bolzmann equation toward the Landau equation, with a bounded entropy and energy
function as initial data. All the techniques used until now are analytical techniques using
convergence theorems or spectral analysis, and asking at least for a bounded entropy and
energy initial condition.

In the grazing collision asymptotics, the cross-section in the Boltzmann operator is a func-
tion of a small parameter depending on the nature of the collisions. In Buet-Cordier-
Lucquin [3], these asymptotics are described for the Coulombian case and the non-Coulombian
one.

In this paper, we extend Tanaka’s probabilistic interpretation to a case of soft potential
spatially homogeneous Boltzmann equation without angular cutoff. We state a nonlinear
stochastic differential equation of Poisson type, related to the Boltzmann equation with soft
potential. Using the usual tools of the convergence in law on the set of cadlag functions, we
prove the existence of a solution to this stochastic differential equation called a Boltzmann
process. As a corollary, we obtain a new result of existence of weak solutions of Boltzmann
equations for every fourth-order moment probability measure initial data.

Then we consider renormalized such Boltzmann processes which make prevail the grazing
collisions. Our main result in this paper consists in proving the convergence in law, in
the Skorohod space, of sequences of such processes to a Landau process for a large class of
initial data. The Landau process, introduced by Guérin [16], is related to the Fokker-Planck-
Landau equation with soft potential, and can also be obtained as a solution of a nonlinear
stochastic differential equation driven by a space-time white noise. We immediatly deduce
a convergence result at the level of the partial differential equations for general initial data.
The asymptotics of grazing collisions we consider include those of Degond and Lucquin, [4],
and Desvillettes, [5]. Unhappily, the probabilistic tools oblige us to a L2-framework, which
necessitates to consider the potential v € (—1,0]. In particular, our theorical approach do
not recover the interesting coulombian case, even if our numerical approximations work in
the same way.

As in the analytical framework, uniqueness is an open problem for all the equations we
consider. All the convergence results we prove are obtained by a compactness method and
we only obtain existence of converging subsequences.



The pathwise interpretation of the equations (in the probabilistic framework) provides a
natural approximation by interacting particle systems. We build in Section 4 some Monte-
Carlo approximations of solutions of the Fokker-Planck-Landau equations, via stochastic
interacting particles with grazing collision asymptotics related with the size of the particle
system. We prove the convergence of the empirical laws of the particle systems to a weak
solution of the Landau equation. We deduce from this theorical result a very simple simu-
lation algorithm, based upon particles conserving momentum and kinetic energy.

We finally discuss about numerical results. At our knowledge, in one hand, no numerical
resolution of the Landau equation in 3D seen as limit of grazing collisions Boltzmann equa-
tions has been developed by deterministic methods, and in another hand, the deterministic
particle methods do not work for the 3D Landau equation. Some numerical Monte-Carlo
algorithms for the Landau equation exist, but without convergence proofs, see Takizuka
and Abe [25] and Wang, Okamoto, Nakajima, Murakami [27], and they are inspired by the
diffusion structure of the Landau equation and do not follow the asymptotics of grazing
collisions. An interest of our approach is to see in the simulations the convergence from the
renormalized Boltzmann equations to the Landau equation (see Section 6 figure 1).

The paper is organized as follows : in Section 2, we explain the pathwise interpretation of
the Boltzmann equation with soft potential, and solve the nonlinear Poisson-driven stochas-
tic differential equation. In Section 3, we study the convergence in law of the renormalized
Boltzmann processes to a Landau process and deduce the convergence of solutions of the
Boltzmann equations to the ones of the Landau equation when the grazing collisions pre-
vail. In Section 4, we study the approximating particle systems. We describe the pathwise
Monte-Carlo algorithm in Section 5. Numerical results are discussed in Section 6.

Notations

- ID7 will denote the Skorohod space ID([0, T], IR?) of cadlag functions from [0, T] into IR3.
The space IDr endowed with the Skorohod topology is a Polish space.

- Cr is the space C([0,T], IR®) of continuous functions from [0,77] into IR* and CZ(IR?) is
the space of real bounded functions of class C? with bounded derivatives.

- P(IR?) is the set of probability measures on IR? and Po(IR?) the subset of probability
measures with a finite second order moment. Similarly, P(IDr) denotes the space of prob-
ability measures on Dy and P,(IDr) is the subset of probability measures with a finite
second order moment: g € Po(IDr) if fzelDT SUPyeo, 1] |z(t)2q(dz) < oo.

- Let A and B be two matrices with same dimensions. The symbol A : B denotes the real
Zi’j A;;B;j and A! is the transpose matrix of the matrix A.

- K will denote a real positive constant of which the value may change from line to line.

General Properties

Let us remark that in the soft potential cases, the coefficients in the equation we consider
are unbounded. The study is then really harder than in the Maxwell case, developed for
example in Fournier [9], Guérin [17]. The probabilistic tools oblige us to work in a L2-
framework and we are able to deal with moderately soft potentials, i.e. v € (—1,0], thanks
to the following estimates:

Lemma 1.1 For each v € (—1,0], for each z € IR?,

\z|2+7 < |z|2 +1; |z|2+27 < |z\2 +1. (1.1)



Proof. One has
|27 = 12771 51 + 27T (1.2)

But v € (—1,0], then 2+~ > 0 and |2[**71, 4 < 1. Moreover, |z|"1},;>; < 1, and we have
the first result. The second one is proved in a similar way. A

2 The Boltzmann Process

2.1 The equation

The Boltzmann equation we consider describes the evolution of the density f(¢,v) of par-
ticles with velocity v € IR® at time ¢ in a rarefied homogeneous gas:

of

o = Qs f), (21)
where ()p is a quadratic collision kernel preserving momentum and kinetic energy, of the
form

2T m
it nen = [ f (f(t,v’)f(t,vi)—f(t,v)f(t,v*)>B(lv—v*\ﬁ)d@dwdv*
Ux %)

=0 Jo=0
(2.2)
with v = 242 + @U and v/, = Y= — @a, the unit vector o having colatitude 6 and

longitude ¢ in the spherical coordinates in which v — v, is the polar axis. The nonnegative
function B is called the cross-section.
The unit vector o writes

— Ux . F — Uk,
o =cosf——* 4 sin GM (2.3)
v — vyl v — vyl
where for z € R3, ¢ € [0, 2],
[(z,p) = cos pl(z) + sinpJ(z) (2.4)

and ﬁ (z,I(z),J(z)) is an orthonormal basis of IR®. One can choose, for example,

_ =l (—72,71,0) if z?2+22>0
2 + 2 Z
I(z) = 12 p J(x) = ﬁ/\I(x)
x
(z3,0,0) if 22 + 23 =0
Then ind
v = v+27)* +cosgL Sl; T(v— vy, ) (2.5)
and we set
0—1 iné
a(v,v,,0,p) =0 —v= %(v—v*)—l—&%f‘(v—v*,w). (2.6)

The main problem here is that the jump amplitude a does not depend regularly on the
velocities v and v,. The “almost”-Lipschitz property of a is recalled in the following lemma.
Its proof can be found in [24] or in its “fine” version in [12].



Lemma 2.1 1. There exists a measurable function @y : R3 x R — [0, 27], such that
for all XY, ¢,

DX, ) —T(Y, o+ ¢o(X,Y))| <3|X —=Y| (all the angles are modulo 2w) (2.7)

2. This implies that for all v,vs,w,w, in IR®, 6 € [0,7], ¢ € [0,27],

|a(v,v+,0,0) — a(w,ws, 0,0+ o(v — v, w — w,))| <30 (Jo —w| + v, —wi]) (2.8)

()

We are interested in cases for which the molecules in the gas interact according to an inverse
power law in 1/r® with s > 2. The physical cross-sections B(z,8) tend to infinity when 6
goes to zero, but satisfy fgr |02B(2,0)df <  for each z. Physically, this explosion near 0
comes from the accumulation of grazing collisions.

and in particular that for all v,v,, 0, @,

|a(v, vs, 0, 0)| <2 (lv = ) (2.9)

In this general (spatially homogeneous) setting, the Boltzmann equation is difficult to
study. A large literature deals with the non physical equation with angular cutoff, namely
under the assumption [ B(z,60)df < co. More recently, the case of Maxwell molecules,
for which the cross-section B(z,8) = 3(6) only depends on 6, has been studied without the
cutoff assumption. In the Maxwell context, Tanaka, [24] was considering the case where
Js 08(0)dd < oo, and Horowitz, Karandikar [18], Desvillettes [6], and Fournier, Méléard [9],
[12], have worked under the physical assumption [ §>3(6)df < +oo. In the non Maxwell
case, by analytical methods, Goudon [13] and Villani [26] obtain existence results. With
a probabilistic approach, Fournier-Méléard [11] obtain such results in dimension 2 and for
cross-sections bounded as velocity function. We generalize here this approach in dimension
3 and for unbounded (as velocity field) soft potential cross-sections of the following type:

Hypothesis: the cross-section is of the form

B(z,0) = h(|2])|2]"5(0), (2.10)

with v € (—1,0] and h a bounded nonnegative locally Lipschitz continuous
function and g from ]0, 7] — R+ such that [ 628(0)d6 < oc.

Let us first recall the probabilistic approach.
Equation (2.1) has to be understood in a weak sense, i.e. f is a solution of the equation
if for test functions ¢, % < f,¢ >=< Qp(f,f),¢ > where < .,. > denotes the duality
bracket between L' and L™ functions. By a standard integration by parts, we define a,
solution f as satisfying for each ¢ € CZ(IR?)

o 2w ™ ,
> /133 F(t,v)p(v)dv = / . /0 /0 ($(0) — §(0)) B(v— s, 0)d0dipf (£, v)du f (2, v.)dva.

Since the function 8 may have an infinite mass on [0, 7], the RHS term may explode. Thus
we have to compensate it, and taking into account the conservation of mass, we obtain
finally the following definition of probability measure solutions of (2.1).



Definition 2.2 We say that a probability measure family (P;)i>o0 is a measure-solution of
the Boltzmann equation (2.1) if for each ¢ € CZ(IR®)

t
(6P) = (670 + [ (KF, (0.0.),P(dv) Pu(dv.) s, (21)
where Kg?ﬁ is defined in the compensated form
Kg’ﬁ(u,v*) = —bh(|v — v|)|v — vi| (v — v,).V(v) (2.12)
27 ™
# [ (804 al0.00.0,0)) = 60) — l0,0.,6,).960) ) (o = v.Dlo — w560
o Jo
and where
b= ﬂ/w(l —cos 0)5(0)de. (2.13)
0

We consider (2.11) as the evolution equation for the marginals of a Markov process the law
of which is defined by a martingale problem.

Definition 2.3 Let 8 be a cross section such that [ 0?8(0)d0 < +o0o and Qo in P2(IR%).
We say that Q € P(ID(IR, R?)) solves the nonlinear martingale problem (BMP) starting
at Qo if under Q, the canonical process V satisfies for any ¢ € Cb2(lR3)

8V0) = 60V0) = [ (I8, (Vi) Qo) (2.14)

is a square-integrable martingale and the law of Vi is Qq. Here, the nonlinearity appears
through Qs which denotes the marginal of Q at time s.

Remark 2.4 Taking expectations in (2.14), we remark that if Q is a solution of (BMP),
then its time-marginal family (Q¢)i>0 is a measure-solution of the Boltzmann equation, in
the sense of Definition 2.2.

Our first aim is to prove the existence of a solution to the martingale problem (2.14) and
then to obtain the existence of a measure-solution to the Boltzmann equation. Our method
gives no hope to obtain an uniqueness result. We generalize here the results of Tanaka and
Horowitz-Karandikar [18] to soft potential cases.

We will introduce a specific nonlinear stochastic differential equation giving a pathwise
version of the probabilistic interpretation. We obtain the existence of weak solutions of this
equation under Hypothesis (2.10), as limits in law of solutions of regularized equations.

2.2 The pathwise approach

Let us now consider two probability spaces : the first one is the abstract space

(2, F,{Fi}te0,r), P) and the second one is ([0,1],B([0,1]),dc). In order to avoid any
confusion, the processes on ([0, 1], B([0,1]), da) will be called a-processes, the expectation
under da will be denoted by E,, and the laws L.



Definition 2.5 We say that (V,W, N, V) is a solution of (SDE) if

(i) (V) is an adapted cidlag IDr-valued process such that E(sup,eio 7 |Vil?) < +oc,

(i) (Wy) is a a-process such that Eq(supep ) [Wil*) < +oo,

(i1i) N(w,dt,do, dz,db, dy) is a {Fi}-Poisson point measure on [0,T] % [0,1] x Ry x [0, 7] X
[0, 27] with intensity m(dt,do, dz,df,d¢) = dtdadz[(0)dOdy and associated compensated
martingale N,

(iv) Vi is a square integrable variable independent of N,

(v) L(V) = La(W),

(vi)

t 1
Vi=Vo—b /0 /0 h(IVa — Wo(@D)[Vi — Wi(@) (Vs — Wi(a))dads

t rl T 2w N
+/ / / / / a(Vo—, Ws— (@), 0, 0)Liz<n(Vee - Wo_(a)) Vo —Wa_ ()} V (ds, dv, dz, d6, dip)
o Jo JIR Jo Jo
This definition can be understood through the following remark.

Remark 2.6 If (V,W,N,Vy) is a solution of (SDE), using Ité’s formula, one easily proves
that L(V) = Lo(W) is a solution of (BMP) with initial law Qo = L(Vp), and thus
{L(Vs) }sepo,) is a measure-solution of the Boltzmann equation (2.11) with initial data Qo.

We are now able to state our existence theorem, which is the main result of this section.

Theorem 2.7 Assume that Qg is a probability measure on IR® with a forth order moment,
and that B(z,0) = h(|z|)|z|"B(0) is a cross-section satisfying Hypothesis (2.10). Then

1) The nonlinear martingale problem (BM P) with initial data Qo admits a solution Q €
Po(Dr).

The mesure Q is also a weak solution of (SDE): if W is an a-process such that Lo,(W) = Q,
then on an enlarged probability space from the canonical space (IDr,Dr,Q) there ezists a
Poisson measure N with intensity m and an independent square integrable variable Vi with
law Qo such that (X, W, N,Vy) is solution of (SDE), where X is the canonical process.

2) Moreover, Eq(sup,<p | Xt|*) < +oo.

Remark 2.8 There is no assumption on Qu, except the existence of a forth order moment.
This allows wus in particular to consider degemerate initial data, as Dirac measures. The

point 1) in Theorem 2.7 exhibits in particular a measure-solution to the Boltzmann equation
(2.1) for each initial data Qo € Py(IR®).

The proof consists in many steps. The first one generalizes the result of Fournier-Méléard
[11] given in dimension 2. The specific difficulty in dimension 3 is the non Lipschitz conti-
nuity of a described in lemma 2.1. We will prove

Proposition 2.9 Assume that B(z,0) = ¥ (2)B(0) with ¢ a nonnegative bounded and lo-
cally Lipschitz continuous function, and B integrating 0. Assume that Vy is a forth-order
moment random variable. Then the nonlinear stochastic differential equation (SDE) which
can be rewritten in this case

t 1 s 2
Vi =V +/ / / / / a(Vs—, Ws—(),0,0)Lis<ypv, . —w,_ (o))} N (ds, da, dz, b, dip)
o Jo JIR, Jo Jo

(2.15)



admits a weak solution, and moreover, for every T > 0,

E(sup |V;|*) < +o0. (2.16)
t<T

Proof. The proof follows essentially the proof of Theorem 3.4 in [11]. Let us assume that
the function 1 is bounded by M. Let us define

a(v,w,0,0,7) = a(v,w,0,0)1<yu—w)
and its cutoff versions
an(v,w,0,p,2) =a(v AnV(—n),w AnV(-n),0,p,x).
We remark that

[ lan(o,0.0.0,2)1do < Mol —ul (2.17)
/|an v,w,0,0,7) — a, (v, w', 0,0, z)dr < Ky(jv — 0|+ |w—w'])  (2.18)

Thanks to these properties, we are able to construct, by a sophisticated Picard iteration
mixing results of [12] and [11], a solution of

Vt—Vo+///R+/ /27r (VW (a),0,9,z)N(ds,da, dz, db, dy)

satisfying moreover that

(2.19)

supE(sup VR < +oo. (2.20)
s<t

Then, if Q™ denotes the law of V™ on the path space, the sequence (Q™) is clearly uniformly
tight.

Now we have to prove that each limit point ) of this sequence is solution of the nonlinear
martingale problem associated with (2.15). We consider the canonical process (X;) on Dy
and for ¢ € C,}(IR?’), t >0, we set

HY = $(X) -4 (X0)- [ t / N [ " (¢<Xu+a(xu,w,e,so,a:))—gb(Xu)) Qu(dw)(60)dbdpdzdu

and H;' * denotes a similar quantity with a,, instead of a and Q™ instead of Q). If G is a
continuous bounded function on (IR*)P, one has to prove that

< (Ht¢ - Hf)G(XS17"'1X5p)7Q >=0

knowing that
< (HP? — HM)G (X oo X)), Q" >= 0

for 0 < 51 < ... < s, <s <t <T. The only new difficulty in dimension 3 consists in
proving that the function

K(X,Y) = / t /0 " /0 i /0 ZF <¢(Xu+&(Xu,Yu,0,(p,a:)) —¢(Xu)) B(6)dbdipdzdu

8



is continuous on IDr X IDr, although a is not regular. Using the translation invariance of
the Lebesgue’s measure dy , we write

woen)—xee i< [0 ] " (Jox) - ocra

+|d( Xy + a(Xu, Y, 0,0) — ¢(X{¢ + a(X{“ Y'u’,7 0, ¢ + @o(Xu, Yu))) DIB(G)deQDdU

and thanks to Lemma 2.1, we see that the RHS term tends to 0 when the uniform distance
between X and Y tends to 0.

A standard proof allows us to conclude that @ is solution of the nonlinear martingale prob-
lem (BMP) associated with (2.15) and using a representation theorem, we can exhibit an
enlarged probability space, on which the canonical process is solution of (2.15) (a similar
argument is more detailed in the end of the proof of Theorem 2.7. The property (2.16)
follows easily from (2.20). A

Let us now prove Theorem 2.7

Proof. In order to apply Proposition 2.9, we consider some cutoff of the cross-section in
both variables.

We introduce the following approximating model:
Let I,k € IN* and define

Bi(0) = 5(9)1|a\2% ; Yr(r) = h(r)(r" ANk),Vr € R,.

Each function 1)y, is locally Lipschitz continuous and is bounded by kH, where H is a bound
of the function h. Thanks to Proposition 2.9 and for each (k,1), there exists a weak solution
to the nonlinear stochastic differential equation (SDEy;):

t pl T 2T
k,l s B
AR 7 /0 /0 /JR+ /0 /0 (Ve Wi (@), 0,0)1 (e (vt oy, Nia(ds, dav, dz, 6, dp)

where Ny, is a point Poisson measure with intensity dsdadzf;(8)dfdy on [0,T] x [0,1] x
[0,kH] x [0, 7] x [0,27]. So the associated nonlinear martingale problem (BM P}, ;) admits
a solution P¥!. The aim is now to prove that the sequence (P*!) of probability measures
on the path space IDr is uniformly tight and that each limit point is solution of the initial
nonlinear martingale problem (BM P).

Since the limit case has sense only in a compensated form, we write each equation (2.21)
in its compensated form:

t 1
vEL = v / / P (VE — W (0) (VE — W (0))dads
0 0

(2.21)

t 1 s 2
+/0 /0 /ZR /0 /0 a(VSk_J’Wle(a),H, (P)1{$ka(Vsk_,liwskil(a))}Nk,l(dS,dOA,d.’L',dO,d(p)
+

where

by = n/oﬂu — cos 0)3(6)do.



Lemma 2.10

sup E(sup [VFH*) < 4o0. (2.22)
ki t<T

Proof. (of the Lemma) Thanks to Lemma 1.1, we obtain easily that

t pl
Bl VY < k(B0 + [ [ BeuplvE - xil + 1)dads
s<t 0 Jo u<s
t
< K(l + [ E(sup |Vuk’l|4)ds> (2.23)
0 u<s

and the constant number K does not depend on k and /. By Proposition 2.9, E(sup,<y [VEH 4

is finite for each k,l and the proof is obtained by Gronwall’s lemma. A

It is thus classical to show that the Aldous criterion is satisfied.

Hence the sequence (P*!) is tight.

Let us now identify each limit point of (P*!). Let @ be a limit value of this sequence. We
consider the compensated martingale problems. Let (X¢); be the canonical process on IDr
and for ¢ € CZ(IR?), t > 0, we set

t
HY = $(X,) — ¢(Xo) +b / / e VUKD~ w)h(1 X = )Xo — " Qulcho)e
27
/ / / / a(Xu,w,0,0,7)) — $(Xa) — a( Xy w, 0, 0,2) (Xo — ).V
B(1 X, — w])| X — w['Qu(dw)B(6) dbdipdu

and Hf’l’d’ denotes a similar quantity with 1 (X, —w) instead of h(| X, — w|)| X, — w|” and
[, instead of 8 and b; instead of b and lef ! instead of Q@Qu- The probability measure ) will

be a solution of the nonlinear martingale problem (BM P) with initial law Q) if it satisfies
for each 0 < s1 < ... <5, <5<t <T,each G € Cy((IR*P),

< (H) - HY)G(X,, ..., X5,), Q@ >= 0. (2.24)
Since P®! is solution of (M P)y,, we already know that
< (HY — HEYG(X,, 0 X, ), PR >= 0.
Since the sequence (P*) satisfies the Aldous criterion, the law @ is the law of a quasi-cig
process (cf. [19] p. 321). Then the mapping F : z +— (é(z:) — ¢(z5))G (5, ..., Ts,) is Q-ave.
continuous and bounded from D7 to IR. Thus < F,P*! > tends to < F,Q > as k,[ tend

to infinity.
Now, let us successively prove that

// /%/3 (X + a(Xy,w,0,0)) — $(Xy) — a(Xy, w,0,0).Vo(Xy))

= w])(| Xy — |7 = (|Xu — w|") A R) PP (dw) By (6 )d9d<PdU)G(X51,---,Xsp),P’“’l>

10
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T, = // /2/ B(X, + alXu, 0,0,0)) — $(X) - a(Xuyw,0,0).VH(X,))

— w])| Xy — 0] (B(0) — B(0)) PE (dw)dbdpdu) G(X sy, -, X, ), P >
T3 = <G(Xs,.nX //3 L (Xu,Yy,), PP (dX) ® PH(dY) >
< G(Xsl,...,Xsp)/ K (X0 Y2).Q(X) @ Q) >

and the term Ty similar to 77 corresponding to the drift term, tend to 0 as k,! tend to
infinity.

Term T:

T |

IA

s t
K [Copoan< [ [ 1= uP(X, — ) - (X —up) ab
0 s
PR (dw)du, PP >

t
K< / /RS |Xu — w|2+71{|Xu_w‘72k}Pff’l(dw)du,Pk’l >
s

t
< K</ / | Xy — w]?T71 1 PR dw)du, PP >
s JIR® {[Xu—w|<(k)7}
24y

<

IA

and T} tends to zero when k tends to infinity, uniformly in I since [ 628,(0)d0 < [ 6°8(6)df <
400, and since HT'Y < 0.

Term Ty: By a similar study with the drift term, we obtain

Ty <

14y

t
K < / /133 Xy — w](| Xy — w[" — (| X — w]) AK), PE(dw)du, P >
S
< K(k) ~
and Ty tends to zero when k tends to infinity, since v € (—1,0]. We observe here the
necessity to choose v more than —1, and we can not assume more generally v € (—2,0] as
n [13] or [26]. These authors use a symmetry of the drift term we loose here, because of

the functions G(X,, ..., X;,) giving the martingale property.

Term T5:

T3

IA

T t
2 _ 2+ k,l k,l
K [ 01600 - oo < [ [ (%= PP @w)au, P >

K(s;pEpkz(sup XP) + ) " 160) - B0

u<T

IN

which tends to 0 as [ tends to infinity, uniformly in k£ thanks to Lemma 2.10.
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Term T35: Let us define the function F(z,y) on Dy x Dy by F(z,y) = fst Kg7(xu,yu)du.
The function F' is Q ® Q-a.e. continuous by a similar argument as in the proof of Proposition
2.9 and not bounded. Lemma 1.1 implies that

™
Fla,y) < K/H%@W(WPWWWﬁM+MVWJ”0
0 s<u<t

IA

K(sup |avu|2 + sup |yu|2 + 1).
u<T u<T

Now, the measure P! ® P+ converges obviously to Q ® Q. Then, for each fixed real
positive number C, the sequence < F A C, P¥l @ P¥l > converges to < FAC,Q ® Q >.
We remark that

|1F (2, 9) 1 r@y)>c) < K ( sup |z (w)|” + sup [y (u)|” + 1) Lfsup, < fo(w)[2-+sup, < [y(w) 2>C/K -1}
u<T u<T = =
< K(Sup |z(w)[* + sup |y(u)]? + 1) (l{supu<T 2(u)2>C/2K—1/2} T Lsup, <7 |y(u)\220/21<_1/2}>
u<T u<T > <

and it is easy to prove thanks to Lemma 2.10 that

sup < (Sup | (u)[*+sup |y(u)|2+1) (l{supu<T e(w)2>C/2k—-1/2) T Lisup, \y(u)\226‘/2K—1/2}) , PPlopht >
k.l u<T u<T < <
tends to 0 as C tends to infinity.

We have thus proved that each limit law of the sequence (P**!) is solution of the martin-

gale problem (BMP). Since such limits exist thanks to the Aldous criterion, we deduce

obviously from this approach the existence of at least one solution to (BM P).

Let us now show that each solution @ of (BM P) is a weak solution of (SDE).

The canonical process X is a semimartingale under (). Then a comparison between the 1t6

formula and the martingale problem proves that X is a pure jump process and that its Lévy

measure is the image measure of the measure m on [0,7] x [0,1] x R x [0, 7] x [0, 27] by

the mapping (s, @, z,6,¢) — a(Xs;_, W,_(«),0, (P)1{;c§h(\Xs,—st(a)|)\Xs,—Ws,(a)|7}' Then

by a representation theorem for point measures [8], there exists on an enlarged probability

space a square integrable variable V) and a point Poisson measure N with intensity m such

that (X, W, N, Vy) is a solution of (SDE). A

3 Convergence of renormalized Boltzmann Processes towards
a Landau Process

3.1 A probabilistic interpretation of the Landau equation

The Landau equation, also called the Fokker-Planck-Landau equation, describes the colli-
sions of particles in a plasma and is obtained as limit of Boltzmann equations when the
collisions become grazing. In the spatially homogeneous case, it writes in IR®:

of

S =) (3.)

12



with

3
QD) (o) =3 Y o { [ oy 0 =0 |1 (60 g—f (1,0) ~  (5,0) 50~ (t,v*)] }

y
inj=1 *

where f (t,v) > 0 is the density of particles having velocity v € IR® at time ¢t € IRT, and
(Aij (2))1<; j<3 i a nonnegative symmetric matrix depending on the interaction between
the particles, of the form

A(z) = Al["™T0(2) h(l2]) (3:2)
z% + z§ —Z129 —2123
= Alz|"h(Jz]) | —z122 22 +22 —223
—Z123  —22%3 z% + z%

where II(2) is the orthogonal projection on (z), A is a positive constant and h is a
nonnegative locally Lipschitz continuous bounded function.

By integration by parts, see [26], a weak formulation of the equation (3.1) writes, at least
formally, for any test function ¢ € Cg (R3),

d 1< 2 2
G [oiena = 130 [ ddo 60 (10 45 0= ) (036 0) + B0 (00)

,j=31
+% Z /Rax B dvdv, f (t,v) f (t,v4) bi (v — vs) (Bi (v) — B (v4)) (3.3)

where b; (z) = 2?21 0jAij () = —2Ah (|2]) 2| 2.

As for the Boltzmann equation, the equation (3.3) conserves the mass, thus we give a
definition of probability-measure solutions of the Landau equation :

Definition 3.1 Let P, belong to P, (B?’). A probability measure solution of the Landau
equation (3.4) with initial data Py is a probability measure family (P;),», on IR> satisfying

t
(6. P1) = (¢, Po) + / (L? (0,0.) , P, (dv) P, (dv.))ds (3.4)

for any function ¢ € Cg (]R3) where L? is the Landau kernel defined on IR* x IR? by :

3

3
L (m) = 5 3 Gh6(0) Ay (v —v) + 306 (0)bi (v v.)

ij=1 i=1

= %J(p (v): A(v—v,) +b(v—v) .V (v)

with Jy = (aizqu)gz‘,js?)'

We consider now the martingale problem associated with the Landau equation and defined
as follows.

13



Definition 3.2 Let Py belong to P, (IR?).
Let (Y;),>o be the canonical process on Cr. P € P (Cr) is a solution of the martingale

problem (LM P) with initial data Py if the law of Yy is Py and for any ¢ € C?(IR?),

t
b(¥i) — ¢ (¥o) - /0 < I (Yarw,), Py (dv) > ds

is a P-martingale, where P, = Po Y, L.

Remark 3.3 The time-marginals family of a solution of the martingale problem (LM P)
is also a measure-solution of the Fokker-Planck-Landau equation.

Guérin already built in [16] by a direct probabilistic approach a Landau process solution of a
nonlinear stochastic differential equation driven by a white noise and deduced the existence
of a measure-solution of the Landau equation for any dimension > 2 and for v € (—1,0].
We obtain here a new proof of the existence of a solution to the Landau process (and then
of a solution to the Landau equation) as limit of Boltzmann processes.

3.2 Asymptotic of Boltzmann processes towards a Landau process

Arsen’ev and Buryak (see [1]) have shown the convergence of the Boltzmann equation
towards the Landau equation under restrictive assumptions on the cross section and on the
initial data. In a more physical situation, Degond and Lucquin, [4], study the convergence
of the Boltzmann operator Qg (f, f) for a Coulomb potential (y = —3) toward the Landau
operator Qy, (f, f) using the following approximation

1 cos(6/2)

g0 = |log £| sin®(0/2)

0>¢

Desvillettes, [5], proves the convergence for non Coulomb potentials using another asymp-

totic : ) 0
50 -6 (2)

Here we are interested in stating the convergence in law of the Boltzmann process, obtained
in Section 2, towards a Landau process when the collisions become grazing for ” moderately
soft potentials”, i.e. v € (—1,0]. With this aim in view, we use a general approximation
introduced by Villani in [26]. We consider 3¢ a function from [0, 7] to R* satisfying

V6o > 0 57 (0) — 0 uniformly on 6 > 6, (3.5)
Af = 7r/ sin’ (Q> BE(6)dd — A >0 (3.6)
0 2 e—0

Let us notice the following properties of °:

Lemma 3.4 1) / B¢ (0) d0 — +oo,
0 e—0
2) For k > 3,
/ﬂ sin® 0 B (0)dd — 0
0 2 e—0 '

14



Proof. 1) An easy computation shows that if the limit of the masses of 5 is finite, then
necessarily, A = 0.
2) Let k > 3, let > 0, we consider §; > 0 such that sin*—2 (g) < n for any 0 < 6.

[ (5) @< [t (5) 6@ [ (5) 5° 0100

Thanks to (3.5), there exists g9 > 0 such that fgg sin* (g) B¢ (0)dl < n for any € < g.
Moreover, using the convergence (3.6), there exists K > 0 such that

/Oﬁsm ( )ﬁf( )db < Kn +1

Then [ sin® (g) B¢ (0)df — 0 as e tends to zero. A

For each ¢ > 0, for v € (—1,0] we define the Boltzmann kernel Kgs,,y on R?® x IR?, as in
(2.12), by

Kgs (v,v4) = =b°h(Jv — vi|)|v — V|7 (v — v4).Vd(v) (3.7
2m
L[ (660+ 000,06, = 910) = a(0,0.,6.0).96(0) )l = v. o = 0.5 OV
with b* =« [ (1 — cos 6) ¢ (6) dO

We notice that the Boltzmann kernel converges towards the Landau kernel when ¢ — 0,
for any v,v, € IR® and ¢ € Cg (IR3) ( for more details, see the convergence of the term F;
in Section 3.4).

We denote by (BMP) the martingale problem associated with the Boltzmann equation
defined as in Definition 2.3 replacing K ¢ By by K ¢ ¢ In the previous section, we have proved
the existence of a solution Q° of (BSM P) for v € (—1,0]. We are now interested in the
asymptotic behaviour of the sequence (Q¢),., when ¢ tends to 0.

We state the following main theorem.

Theorem 3.5 Consider a bounded locally Lipschitz continuous nonnegative function h,
v € (=1,0], B¢ satisfying (3.5) and (3.6) and Qo a finite forth-order moment probability
measure. Let Q° € P (IDr) be a solution of the nonlinear martingale problem (B M P) with
kernel Kge - defined by (3.7) and initial data Q.

Then the sequence (Q°), is tight when € tends to 0, and any of its subsequences converges
toward a solution P € P (Cr) of the nonlinear martingale problem (LM P), associated with
the Landau equation (3.4) having diffusion matriz defined by (3.2), with initial data Q.

Remark 3.6 When v = 0 and under some regularity assumptions on h, Guérin has proved
in [17] Corollary 7 the uniqueness of a solution P to the martingale problem (LM P). Then,
in this case, the sequence (Q°),, converges towards this unique solution P.

Let us notice that Villani [26], and Goudon [13] prove, in two independent articles, the
existence of weak function solutions of the Landau equation for soft potentials using the
convergence of the solutions of the Boltzmann equation towards the solutions of the Landau
equation. The interest of our approach is the understanding of this convergence at the
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microscopic level of processes. These ones jump more and more often with smaller jumps,
when ¢ decreases and then converge finally to a (continuous) diffusion process. Moreover,
our convergence result is true for general (even degenerated) initial datas and leads naturally
to particle approximations.

3.3 C-Tightness of the sequence (Q°),.,

We assume that Qg has a finite fourth-order moment.
Let Q° be a solution of the martingale problem (B¢M P) obtained in Theorem 2.7.
Thanks to the point 2) of Theorem 2.7, for any € > 0, the probability @ satisfies

EQE

sup |Xi|*| < K*
0<t<T

with K¢ a positive constant depending on ¢ only through [" _sin* £5° () 9, [™ sin® 5° (6) d¢
and b° according to Lemma 2.1. Using Lemma 3.4 and the asymptotic (3.6) we notice that
the sequence (K*),., converges as ¢ tends to 0. Then there exists K > 0 such that

supFqe
e>0

sup \Xtr*] <K (3.8)
0<t<T

Thanks to Aldous criterion, we deduce, with similar arguments as in Section 2, that the
sequence (Q°), is tight in P (Dr), then a cluster point P of (Q°),., belongs a priori to
P (IDy).

We now prove that the sequence (Q°), is moreover C-tight, in the sense of Jacod-Shiryaev
[19] Definition 3.25, p. 315, and then P will belong to P (Cr).

As the sequence (Q°),. is tight and according to [19] Proposition 3.26 (iii), we just have
to prove that for any > 0, for AX; = X; — X,

limQ* (sup|AXt| > 77) = 0.
e—0 t<T

We use the stochastic differential equation (SDE) introduced in Section 2.2. Let V¢ be a
process with distribution Q¢ such that

t 1
Ve=Vo— ¥ [ [ h(Ve - WE@DIVE - Wi (@] (V; - W ())dads
0 0
t 1 T 27 B
+/// // a(V, Wi (@), 0,0)1z<nve —we (o)) Ve —we (o)} N (ds, de, dz, db, dp)
o Jo JIR.Jo Jo

with Lo (W¢) = £ (V) = Q° and N¢(ds, da, dz, d6, dp) is the compensated martingale of
a Poisson measure with intensity m¢ (dt, da, dz, d, dp) = dtdadz3° (6) dfdp.
Then, by Tchebychev and Burkholder-Davis-Gundy inequalities for jump semimartingales
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and Lemma 2.1,

sup [AVEL'| < 5B | D IAVES

1
(sumeA > 77) —E
t<T n <1

7714 [/ [ v we @0 v - wi @)

Vi = WE_(@)]B° (6) dbdpdads|

s%(/o [ B [ve - wi @ e [

with K independant of e. Thanks to estimates (1.1) and (3.8), we obtain

KT [™
Q° (sup|AXt| > n) < —4/
t<T " Jo

As [i [sin g ‘465 (6) df tends to 0 as € tends to 0, the sequence (Q°),., is C-tight.

(6) do

Sll’l

4

B¢ (6) db

sin —

3.4 Identification of the limit point values P

Let P be a limit value of the sequence (Q¢). Then P is the limit of a subsequence (Q) that
we will still denote by (Q¢) for simplicity. We wish to prove that P is the law of a Landau
process, that means is solution of the martingale problem (LMP). Let ¢ € C2 (IR?). We
define the two following processes on IDr

t

M = (X)) —¢(Xo) - /0 < K% (Xo0.), Q5 (dv.) > ds (3.9)
t

M, — ¢(Xt)—¢(X0)—/O < L9 (X,,0.), P, (dv.) > ds (3.10)

The probability measure P will be a solution of the nonlinear martingale problem (LM P)
with initial law Qg if it satisfies, for any 0 < s1 < ... < s, < s <t < T and G € Cy((IR®)P),

< (My — My)G(Xyy, ey X5,), P >=10

However, Q° is a solution of (B*MP), then we know that, for any 0 < s; < ... <5, < s <
t <T and G € Cy((IR®)P),

< (Mf — M$)G(Xgp,.y X)), Q° >=10
Thus, we want to state the following convergence

‘EQE [(Mts - Mss) G(XSU aX )] Ei>_)0 EP [(Mt - MS) G(XSU ""XSp)]

Sp

1. Since (Q°) is C-tight, the distribution P charges only the set Cr, then the mapping
F:z e ((x) — ¢(2s))G (254, -, Ts,) is P-continuous and bounded from Dr to IR.
Thus < F,Q* > tends to < F, P > as ¢ tends to zero.
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. We now study the convergence of Ege [{f; < Kg’sﬁ (X, vs), Q5 (dvy) > du} G(Xs,, ...,Xsp)]
to Ep [{fst < L? (Xu,vs), Py (dvy) > du} G(Xsl,...,Xsp)].

If we denote by (X,Y’) the canonical process on IDy x Dy, we can write

Eo- [{/t < Kj.  (Xy,04), Q5 (dvy) > du} G(Xsl,...,Xsp)]

S

_Bp H/t < L (Xy,vs) , Py (dvy) > du} G(XSI,...,XSP)]

=E) + F»

t
Bl = Eg-go- [{/ (Kg,’v (Xu,Yy) — L? (Xu,Yu)) du} G(Xsl,...,Xsp)]
t
By = Egegq: [{/ L? (Xu,Yu)du} G(Xsl,...,Xsp)]
t
—Epgp [{/ L? (Xu,Yu)du} G(Xsl,...,Xsp)]
Study of Fi:

t
|E1| < I(IEQE(XJQ6 |:/ ‘K(b&,»y (XuaYu) - L¢ (XuaYu)
s

du] (3.11)

The Taylor development of ¢ writes
14 3
b (v +u) = ¢ (0) +u.V (v) + 5ul.Js (v) ut O (|u| )

We notice that u’.Jy (v) .u = Jy (v) : u.u’. Then we can divide the expectation of the
right term in (3.11) in three parts :

t
Fgeagr [/ ‘K‘Zn (Xu,Yy) — L? (Xu, Ya)
S

du] < B+ Eip+ B

with

B = K(-2+ ) Boese | [ %0 = VX = Va1 (0~ Y0) ¥ ()] ]
Bi = KBowor | [ (1%~ ¥aIXa = ¥a) [Jo (¥0) : (A%, ~ TT (X, 72

a

t 2 I
By = KBy | [ m(Xu =YX =%l [ [ [ la(X0 ¥ar0.0)* 60000 ]
S

2r s
- / / a(Xu, Yo, 6, w)-at(Xu,Yu,H,w)ﬂ5(9)d9d<ﬂ>
0 0
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e We consider the first expectation E1; :
Using estimates (1.1) and thanks to (3.8), we have

FEi1 < K|—2A+ b6|

As b —>O 2A, FE11 converges towards 0 as € tends to 0.
e

e Let us now study Fis :
After some computations, we prove that

2T
/ a(Xu,Yu,H,(p).at(Xu,Yu,H,<p)d<p
0

= (X, = V) sin? 0+ 2(1 = TL(X, - Y,)) (c0s0 = 1] |X, = Ya?

Then
2 ™
/ / a(Xy, Yy, 0,0).0"(Xy, Yy, 0,0) 5 (0)d0dy — AT (X, = V) [ Xy — Y, 2
0 0 E—>

Thanks to (3.8), we conclude that E1; converges towards 0 as e tends to 0.

e Using similar arguments and Lemma 2.1, we prove that E3 also converges to-
wards 0 as ¢ tends to 0.

Finally, we have proved that E; —)OO.
E—r

(b) Study of E»
¢ t
By = Egegge H/ % (XS,YS)ds} G(Xsl,...,Xsp)] —Epgp H/ L (XS,YS)ds} G(Xsl,...,Xsp)]

The functions f{? : DpxDr— R, (z,y) — G(X,,, ..., X)) f; Ajj (T4 — yu) 03¢ (zy) du
and fzb : DrxIDr— IR, (37’ y) — G(Xsu ---aXsp) fst b (xu - yu) 0 (xu) du

are continuous functions (y € (—1,0]), but not necessarily bounded. Nevertheless, us-
ing similar arguments as in the proof of Theorem 2.7 in Section 2, we obtain Fy —)00.
E—r

Conclusion For any (t,s,51,...,8,) € (R.)*™?, with 0 < 5; < ... < 5, < s < t, we have
proved

Ege [(My — M,) G(Xs,, ..., Xs,))] — Ep [(My — M) G(Xs,, ..., Xs,)]

s
P n—oo

which implies that
Ep [(M; — M) G(Xsy, ..., Xs,)] =0

So, (My),>q is a P-martingale and P satisfies the martingale problem (LM P).
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4 A stochastic particle approximation

In this part, we introduce some stochastic colliding particle systems and prove the con-
vergence of their empirical measures to a solution of (3.4) when the number of particles
tends to infinity and the grazing collision parameter of the cross-section tends to 0. This
approximation is natural in a probabilistic point of view and is the theorical fundation of
a very simple Monte-Carlo algorithm described in the next section, based upon particle
systems which conserve momentum and kinetic energy.

In order to define the particle system, we consider a sequence of cutoff cross-sections

By(2,0) = h(|z])(|2]" A k) (0) (4.1)

where h is a locally Lipschitz function bounded by H, v € (—1,0], (g;); a sequence of pa-
rameters tending to 0 as [ tends to infinity and 8¢ is a L'([0, 7r])-function satisfying (3.5)
and (3.6), k is a positive integer. As before we denote by 9 (z) the function h(|z|)(|z|? Ak).

The natural interpretation of the nonlinearity in (3.4) plus a physical interpretation of
the equation lead naturally to binary mean field interacting particle systems which con-
serve momentum and kinetic energy. These n-particle systems are (IR®)"-valued pure-jump
Markov processes with generators defined for ¢ € Cy((IR*)™) by

1 27 ™ kH 1
n—1 2. /0 /0 /0 §(¢(Un +€i.a(vi, 05,0, 0) Loy, vi—v))

1<i,j<n

+ej'a’(vj7 vi, 0, (P)l{acg'zpk(vi—vj)}) - ¢(Un)) dz ! (0)d0d<p (42)

Here v = (v1,...,v,) denotes the generic point of (IR®)" and e; : h € IR® — ei.h =
(0,...,0,h,0,...,0) € (IR*)™ with h at the i-th place.
We denote by

Vkl,n — (Vk:l,ln Vkl,nn)

the Markov process defined by (4.2).

We consider as in Section 2 a pathwise representation of such processes using the family
of independent Poisson point measures (N“¥);<;c;j<n on [0,7] x [0,27] x [0,kH] x [0,T]
with intensities —1= 5 (0)d0dpdzdt. For i > j, we set N = N%*. We define the process
(VkLin), <<, solution of the following stochastic differential equation:

) ) n t kH 27 2 . i ..

Vtkl,m _ V& + Z /0 /0 /0 /0 a(Vsk_l,m’ V;k_l,]n’ 0, (p)1{$§¢k(‘/sk_l’m—Vsk_l’jn)}Nl’w (dﬁ, d(p, dx, ds).
J#i,5=1

(4.3)

We construct it easily by working recursively on each interjump interval of the point process
(NY)1<; j<pn. It is a n-dimensional Markov process with the generator (4.2).

Let us denote by
1 n
kl,n
= — E Oyrkt,in
g et -

kl,n)

the empirical measure of this system and by (7 » the sequence of laws of u*"", which

are probability measures on P(ID([0,T], IR?)).
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Theorem 4.1 Assume Qo € Ps(IR?). Let (V{)i>1 be independent Qo-distributed random
variables. Then the sequence (ﬁkl’")k’l’n is uniformly tight for the weak convergence and
any limit point charges only probability measures which are solutions of (LM P). Thus any
limit point (for the convergence in law) of the sequence (u*b") is a solution of (LM P).

Proof. To prove this theorem, we will show

1) the tightness of (7%5"),, in P(P(ID(]0,T], R?))),
2) the identification of the limiting values of (7*")
tingale problem (LM P).

One knows (cf. [22]) that the tightness of (7¥/™)); , is equivalent to the tightness of the
laws of the semimartingales V*51" belonging to P(ID([0,T], IR*)). This tightness is due to

k,l,n as solutions of the nonlinear mar-

sup E(sup |V;"" )

k,l,n t<T

< +o0. (4.4)

This moment condition is obtained by a good use of Burkholder-Davis-Gundy and Doob’s
inequalities for (4.3) and Lemma 1.1.

Let us now prove that all the limit values are solutions of the nonlinear martingale problem
(LM P). Consider 7 € P(P(ID([0,T), R?))) a limit value of (7¥"). Tt is the limit point
of a subsequence we still denote by (7%tm).

We define for ¢ € CL(IR?), 0 < s1,...,8, < 5 < t, G € Cp((R*)?), Q € P(IDr) and for X
the canonical process on ID([0,7T7], IR3)

F(Q) = (60 X,,) (0130 - 60%) - [ t<L¢(Xu,v*),Qu(dv*))dsz),Q>- (45)

Our aim is to prove that < |F|, 7> >= 0.
The mapping F' is not continuous since the projections are not continuous for the Skorohod
topology. However, for any @ € P(IDr), the mapping X — X; is @-almost surely contin-
uous for all ¢ outside an at most countable set D¢, and then F' is continuous at the point
Q if s,1,1,...,5p are not in Dg. Here we use the continuity and the boundedness of ¢, G
and also the continuity of (g,v) fRS L% (v, w)q(dw) on P(ID([0,T], R®)) x R3. Thus, if
s,t,81,...,5p are not in Dg, F' is 7°°-a.s. continuous. Then,

(F2,7%) = lim (F?,xkn )

n
But <|F|,7rkl’"> < <|Fkl|,7rkl’"> + <|F — Fkl|,7rkl’"> where
t
FH(Q) = <G(X31,...,X5p>(¢(xt) ~px) - [ <K§El,k<xu,v*>,Qu<du*>>du),Q>. (4.6)

in which Kggl ; is obtained as ngl ,, but where |2|7 has been replaced by [z|” A k. In this

case and since [ 5°(6)d6 < +oo, K(ggl i also writes

Kfe y (v,0.) = /0 W /OW(¢(U +a(v,04,0,9)) — ¢(v))¢r (v — 0.) 87 (0)dbdep

2T T kH
B /0 /0/0 (¢(v + a(v, 04,0, 0)Liz<yy (v-v.)}) — ¢(v))B% (0)dzdfdep.
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Firstly,
<(Fkl)2, 7_rk:l,n> — E((Fkl(/,l,kl’n))Q)

2
1 — , : .
- E (5 } :(Mtkl,w o M;cl,w)G(V;il,m’ Vkl m))

5 Vs
=1
1 Kl 2
_ EE (((Mt 1o Mfl,ld))G(Vs’]il,lna ,V;,’;l ln)) ) (47)
n—1 l l
+1=B (MY — ME9) (M — MO GVERT L VI GV, v )

where M*-1% is the martingale defined by

Mlcl ip ¢(Vkl m) . ¢(VE)

kH 2w . ; j
/ / / / ( Vkl’m-I—a(VSkl’m,Vskl’]naea (p)1{w§wk(‘/;kl’i"*Vskl’jn)})

—45(1/5“’1'”)) B71(0)dodpdzds

and with Doob-Meyer process given by

< Mkl,z'¢ >,

IR A A E ki kiin 1rklj
—1 Z/o /0 /o /0 (‘is(Vs T aVT VT 0,00 g it _yitanyy)
J=1

2
—¢(Vs’”ﬂ'")> Be1(0)dOdpdzds

and for i # j,

< M9 kit s, (4.8)

1 t pkH pom . . . |
:n—l/o/o /0 /o (¢(V“"kl’m+G(Vs'“’m,V5“’]”,0,<p) {o<un (V- kld”)}‘ﬂ‘é’””"))

<¢(Vskl,jn + a(Vskl’j",VSkl’i",H, So)l{zgz/;k(vskl’m—vs“’j”)} _ ¢(V8kl,jn)>ﬁsz (G)dﬁdgoda;ds.

The right terms in (4.7) go to 0 thanks to the expression of the Doob-Meyer process, to
the uniform integrability proved in (4.4) and to Lemma 1.1. Moreover the convergence is
uniform on k,[. Hence

lim(|F*!|, 7*4") = 0, uniformly in &, 1.
n

Otherwise, the quantity (|F — F¥!|, 7*t") = E(|F — F*|(4**™)) can be written in a form
analogeous to the right term of (3.11) replacing Q¢ by u*'™. Its study is thus controled in
a similar way than the term E; in Section 3.3. Then it converges to 0 uniformly in £ and
n as [ tends to infinity.

Finally, we have proved that
(IF[,=>) =0.
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Thus, F(Q) is 7*°-a.s. equal to 0, for every s,t,s1,..., s, outside of the countable set Dg.
It is sufficient to assure that 7°°-a.s., @) is solution of the nonlinear martingale problem
(LMP). Let us remark to conclude that each solution @ of the limiting martingale prob-
lem is in fact a probability measure on Cy. This remark allows us to deduce immediately
the following corollary. YA

Corollary 4.2 Assume Qo € P4(IR?) and consider a sequence p*r'~™ which converges to

Q. Then the probability measure-valued process (uf’“l”n’)tzo converges in probability to the
flow (Q4)t>0 in the space ID([0,T], P(IR?)) endowed with the uniform topology.

5 The Monte-Carlo algorithm

We deduce from the above study an algorithm associated with the binary mean-field inter-
acting particle system.

From now on, the quantities h, v,k and 3¢ defining the cross-section B, the initial distri-
bution g, the terminal time 7" > 0 and the size n > 2 of the particle system are fixed.
We denote by By, .(2,0) = 1(2)8°(6) the corresponding cross-section with cutoff. Because
of Theorem 4.1 and Corollary 4.2, we simulate a particle system following (4.2), i.e. the
whole path (V")icpo,r) € ID([0, T}, (R*)™).

First of all, we assume that V{* is simulated according to the initial distribution Q?”. Then,
we denote by 0 < 71 < ... < T} the successive jump times until 7' of a standard Poisson
process with parameter nwkH||5%||;.

Before the first collision, the velocities do not change, so that we set V* =V for all s < T7.
Let us describe the first collision. We choose at random a couple (i, j) of particles according
a uniform law over {(p,m) € {1,...,n}?; m # p}. We choose z uniformly on the interval
[0,kH], we choose the first angle of collision ¢ uniformly on [0,27] and we finally choose

the collision angle 6 following the law |’f ;E(ﬁ)l df. Then we set

n7i — n,i n,i n,j . )
VT1 - ‘/O + a(VYO 7 ‘/O 7 97 (P)l{mg,lpk(von,'t_von,])}
V’]’{‘i,‘j — ‘/'On,_] + a(‘/on,j’ ‘/()n,z’ 0’ (’0)1
V;};P — VO",P ifp 7& {Z,]}

{o <y (Vo' =V5)}

Since nothing happens between T and T5, we set V* = Vi for all s € [Ty, Ts|.

Iterating this method, we simulate Vz,, V7, ..., V1, i.e. the whole path (Vi")tefo,r]> Which
was our aim.

Notice that this algorithm is very simple and takes a few lines of program and does not
require to discretize time. It furthermore conserves momentum and kinetic energy. Let
us remark that at least formally, this algorithm can be adapted in a similar way to the
coulombian case, since the soft potential term is cutoffed for the simulations.

6 Numerical results

We use the previous Monte-Carlo algorithm to estimate the fourth-order moment of a
solution of the Landau equation. By this method, one conserves momentum and kinetic
energy, and one follows the asymptotics of grazing collisions.
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We consider the cross-section By (z,0) = vy (2) 8¢ (0) with 9 (2) = |2|77 Ak and p*
satisfying Assumptions (2.10), (3.5) and (3.6) of which the form will depend of the value
of ~.

For each ¢, k, we denote by Q¢ the solution of the martingale problem with cross-section
By, . obtained in Theorem 2.7. We know that for each ¢, &, (Qk’s) is a cluster point as n
tends to infinity of the empirical measure ;¥4 associated with a simulable particle system.
We also know that (Qk’5)5>0 k>0 18 tight and that any limit point P is a solution of the
martingale problem (LM P) associated with the Landau equation.

At last, we define :

m’li,e,n(t) _ / \ |,U|4'ulf,e,n (dv) : m’li,s(t) = /]RS "U|4 Qf,a (d’U)
and my(t) = / o] P; (dv) .
BB

We mention that there is no explicit computation of the fourth-order moment m; for the
Landau equation in our context.

6.1 The *moderately soft’ potentials case, v €| — 1, 0]
We fix v = —0.8 and we consider the following asymptotic

1
pr0) = ———F =1
27ed sin (2%)2 e<|el<n
This function satisfies Assumptions (2.10) for any € > 0 and (3.5), (3.6) when ¢ tends
to zero. We notice that [|5°]|; = w_iZ tan~! (¢/2) and A® = 7 [ 3¢ () sin? (g) df converges
towards A = 7In2 as ¢ tends to 0.
We also consider the initial distribution on IR3, Qg (dv) = 1190122 (v) dv.

We first estimate m_g(t) at time ¢ = .= . We consider n = 50000 particules.

27 °
First of all, when we consider the mean over 100 simulations of m]i’g_'é’SOOOO(%), we notice

that it converges very fastly in k. Hence the error due to the spatial cutoff is small :

Lk I [ 4 [ 6 [ 10 [ 50 |
[ mF0e"0 L) T 0.09742 [0.09873 | 0.09881 [ 0.09878 [ 0.09875 |

So we fix k = 6 in all what follows.

We now study the convergence of mfi,(a)igoooo(%) as ¢ tends to zero. Taking each time the
mean over 100 simulations, we observe in Figure 1 the convergence of the fourth-order
moments for the Boltzmann equation to the one for the Landau equation when € becomes
small.
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fourth—order moment
0.1000

0.0984
0.0968
0.0952 7
0.0936
0.0920
0.0904
0.0888
0.0872 7|

0.0856 1/epsilon

0.0840 T T T T T T T T T T T T T T T T T T
1.0 21 3.2 4.3 5.4 6.5 7.6 8.7 9.8 10.9 12,0

Figure 1. Evolution in 1/¢ of m§5 " (o).

One can notice that m(i,g,.goooo(%

‘m%éﬂgoooo(%) —0.0988| ~ 0.015*¢?, when ¢ tends to zero. Hence, the choice ¢ = 0.1 seems

reasonable to describe the Landau behaviour.

Our algorithm describes precisely the convergence of the Boltzmann equation to the Landau
equation. But we take into account all small jumps, then the duration of computation is
not optimal. For example, when ¢ = 0.1 and k¥ = 6, there is arround 25.10° shocks of
particles on the time interval [0, 1].

) tends to 0.0988, with a speed of convergence in

Let us now study the speed of convergence of m(i’gjé’n(%) to m(i_’g:é(%

infinity. We obtain the Figure 2.

), when n tends to

fourth—order moment
0.11100

’ Continuous lines : 0.0988 % 0.2/1/n
0.10730 * ) : . Points : mﬁ_’o é,n(%)

0.10545
0.10360 |
0.10175
009990 |
0.09805 |
009620 | .

0.09435 ] In(n)/In(s)

0.09250 — T T T T T
2.0 26 3.2 3.8 44 5.0 56 6.2 6.8 7.4 8.0

Figure 2. Evolution of m(i’g:é’n(%) as n — +o0.

The speed of convergence is in 1/4/n. It seems that a central limit theorem holds. (A

proof of a similar central limit theorem has been obtained by Fournier-Méléard [10] from
2D Bolztmann equations without cutoff and for Maxwell molecules).
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At last, we observe the evolution in time of the fourth-order moment. (Our method con-
serves the energy, then the moment of order two is constant in time). We fix again k = 6
and € = 0.1 and we observe the moments of order 4 for some values of ¢ € [0,1] :

fourth—order moment
0.1070

0.1042 7|
0.1014
0.0986
0.0958
0.0930
0.0902
0.0874
0.0846

0.0818 ] time

0.0790 T T T T T T T T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3. Evolution in time of m‘ig;§=5°0°° (t).

6.2 The coulombian case

Our theorical results are satisfied for a potential v €] — 1,0]. But our numerical approach
works in the interesting case for the Landau equation is the case of Coulomb molecules,
v =-=3.

We consider now our algorithm with v = —3 and with the same initial condition of Buet,
Cordier, Degond and Lemou in [2]. We consider n = 50000 particles and each value is
obtained taking the mean over 100 simulations. We take as initial condition ()¢ the mesure
with the following density with respect the Lebesgue measure:

f(0,v) = (MN,UOhvth + MN;”OZ:”HL)

1
2
where My 4. 4,, is the Maxwellian function on R?

N v — ul?
My v, (v) = W%P (_W

with N =5, vy, = 0.45, vo1 = (2,3, 3) and vge = (4, 3, 3).
Moreover we take the asymptotic defined in [4]:

1 cos(6/2)
“(0) = I
g 0) |log £| sin®(0/2) b2¢
In this situation, A® converges towards A = % as ¢ tends to 0. Thus, comparing our

expression of the Landau equation (3.1) and the one of Buet, Cordier, Degond and Lemou
in [2], we notice that we simulate the same quantity, there is no multiplicative factor.
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We notice that the initial data is not a measure of probability, its mass is equal to 5.
Adapting the results obtained by Méléard in [21] for the Navier-Stokes equation, we just
have to consider in our algorithm the following empirical measure

n
5
Mk’g’n = E 5Vke,in
i=1

n >y —

and jump times on the interval [0, T'] of a standard Poisson process with parameter 5nwk|| 5| -

We first estimate the fourth-order moment m_3(¢) at time ¢ = 0.06.

As for the previous simulations, the algorithm converges very fastly in k. Then we fix from
now k = 6.

We observe that the convergence in ¢ of the fourth-order moment of the Boltzmann equation
to the one of the Landau equation is very fast:

IE [ 0.9 | 0.6 | 0.2 | 0.1 | 0.08 |
| m®5°7%(0.06) || 4389.5 | 4389.1 | 4389.9 | 4388.9 | 43885 |

The choice of ¢ = 0.2 seems to be reasonable to describe the Landau moment.
At last, we fix K = 6 and € = 0.2 and we observe the evolution in time of the fourth-order
moment. We find the same evolution as described in [2].

fourth—order moment
4400

43987
4396
43947

43927

43907
43887
4386 7

43847

43827 time

4380 T T T T T T T T T T T T T T T T T T
0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.60

Figure 5. Evolution in time of mgg'Q’SOOOO (t).
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