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Abstract

The aim of this paper is to investigate the properties of the maximum of partial
sums for a class of weakly dependent random variables which includes the instanta-
neous filters of a Gaussian sequence having a positive continuous spectral density.
The results are used to obtain an invariance principle for strongly mixing sequences
of random variables in the absence of stationarity or strong mixing rates. An addi-
tional condition is imposed to the coefficients of interlaced mixing. The results are
applied to linear processes of strongly mixing sequences.

Short Title: Maximal inequalities for sums of dependent random variables.
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1 Introduction

Let (2, K, P) be a probability space and let A, B be two sub o-algebras of K. Define the
strong mixing coeflicient by

o(4,B) = sup [|P(AB) - P(A)P(B)]
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and the maximal coeflicient of correlation

p(A,B) = sup corr(f, g)|
feLa(A),geL2(B)

A strictly stationary sequence {X;}icz is called strong mixing, or a-mixing, if o, — 0
where
a, = a(o(X;,i <0),0(X;,7 > n)).

It should be noted that in order for the invariance principle to hold for a strictly
stationary strong mixing sequence of random variables it is required the existence of
moments of order strictly higher than two in combination with a polynomial mixing rate.
(See Peligrad (1986a) for a survey and Doukhan, Massart and Rio (1994)).

In many situations the mixing rates are hard to estimate. Therefore it is interesting to
replace the strong mixing rates by sufficient conditions imposed to some other dependence
coefficients that might be in certain situations easier to verify. Papers by Bradley (1981)
and Peligrad (1982), (1986b) are steps in this direction.

In this paper we shall consider the following mixing coefficients:

For a stationary sequence {Xj}rez denote by Fr = o(X;;1 € T) where T is a family
of integers. Define

a; = sup a(Fr, Fs)

py, = sup p(Fr, F)

where these sups are taken over all pairs of nonempty finite sets S,7 of Z such that
dist(S,T) > n.
According to Bradley (1993) for every n > 1 (if af — 0)

a;, < ), < 2mal

Bradley (1992) proved in the context of strictly stationary random fields that the condition
oy — 0 as m — oo contains enough information to assure the CLT without any additional
rate or moments higher than 2. Miller (1995) analyzed the fourth moment of partial
sums of such a random field not necessarily stationary, and proved the CLT for some
estimators of spectral density for strictly stationary random fields. Bryc and Smolenski
(1993) found bounds for the moments of partial sums for sequences of random variables
satisfying p} < 1, or

lim p; <1 (1.1)

n—oo
For strongly mixing sequences satisfying either pi < 1 or lim,_,» p; < 1, by the
Remark 3 in Bryc and Smolenski (1993) we know that these conditions do not necessarily
imply lim,,_, p;, = 0. Moreover in some situations these coefficients, or closely related
ones are easy to estimate. With the same notation as in Bradley (1992) we denote by

r* = sup |corr(V, W)|

where the supremum is taken over all finite subsets S,T of Z such that dist(S,7) > n
and over all the linear combinations V' = 3 ,c5a; X; and W = Y, 0; X;.



According to the proof of Theorem 2 in Bradley (1993) and the Remark 3 in Bryc and
Smolenski (1993) one can see that if { Xy }rcz has a bounded positive spectral density, i.e.
0<m< f(t) < M for every t one has 7 <1 —m/M < 1.

For stationary Gaussian sequences the coefficients p} and r; are identical (Kolmogorov
and Rozanov (1960)). As a consequence our results are easily applicable to filters

é-m' = fn(XZ: Xi—l—l; .. aXi—f—mn)

where the underlying sequence {X;} is stationary, strongly mixing Gaussian sequences
which has a bounded spectral density which stays away from 0. When m,, = 0 for every
n such a sequence satisfies p; < 1 and when sup,, m, < oo we have lim,,_, p;, < 1.

The strong mixing property for a Gaussian sequence can also be expressed in terms of
the form of the spectral density (Ibragimov and Rozanov (1978), chapters 4,5).

Our results do not assume stationarity and they deal with triangular arrays of random
variables, {&,i,1 < i < k,} where k, — o0.

In this context we shall define

Qg = sup a(o(€niy i < 8),0(&nj, j > s+ k)) and ), = Sup Q-
s>1 n

The triangular array will be called strongly mixing if limy_,,, @ = 0. Similarly we
define

Pk = SgP(P(U(fm',i €T),0(&nj,7 €9)) and Dy = S‘;Pﬁ;k-

where T, S C {1,2,...,k,} are nonempty subsets such that dist(7’,S) > k. In this paper
we shall impose the condition
lim 7% < 1 (1.2)

n—oQ

Various moment inequalities for sums and maximum of partial sums are contained in
papers by Bradley (1992), Bryc and Smolenski (1993), Peligrad (1998), Peligrad and Gut
(1999), Bradley and Utev (1994). They are excellently surveyed in Bradley (1999). All
these inequalities are important steps which allowed us to establish our general maximal
inequality under the condition (1.1) (Theorem 2.1 in this paper).

In the nonstationary context Peligrad (1996) studied the importance of condition (1.2)
in the CLT for strongly mixing sequences. She proved that a nonstationary strong mixing
sequence satisfying Lindeberg condition and (1.2) satisfies the central limit theorem. Our
Theorem 2.2 in this paper gives an invariance principle for random elements associated
to sums of strongly mixing triangular arrays of random variables satisfying (1.2). What
is notable is that only Lindeberg condition is assumed and no mixing rate is imposed.
This invariance principle generalizes the corresponding results for independent random
variables of Prohorov (1956). The strictly stationary case is studied in Peligrad (1998).

In the next text we shall denote by [z] the integer part of z,= denotes the weak
convergence.



2 Results

Our first theorem is a Rosenthal type moment maximal inequality for sums of random
variables in terms of the interlaced mixing coefficients {pZ}.

Theorem 2.1 Let {X;}i>1 be a sequence of random variables with EX; = 0 and E|X;|? <
oo for every i > 1, and a certain q > 2. Assume there is a N such that py, < 1. Then
there is a constant D(q, N, p&) such that

This theorem is a basic tool in establishing various almost sure results for sums of
dependent random variables.

In this paper we shall use our maximal inequality to establish the functional form of
the central limit theorem of Peligrad (1996).

For a triangular array {&.;;1 < i < k,} of square integrable (F£2, < oo) centered
(E&ni = 0) random variables, we denote by o2, = Var (X7, &) for m < k,, and o2 =
o2, and define, for 0 <¢ < 1,

q

e

ZX

FE max
1<i<n

< D(g, N, py) (ZEleq (i )

=1

for alln. O

2

o> t} and W, (t) =

0-2

g

E;il ni

On

vy = inf {m; 1<m<ky: (2.1)

In the analysis of limit theorems for dependent random variables

one of the difficulties is the irregular behaviour of second order characteristics. To
control it, we assume that there exists a constant C' such that for all for all 0 < t <
t+6 <1,

”t+6
lim sup iz, Var(ni) <C (2.2)

B (20 )

Zl/t

Theorem 2.2 Let {&,;1 < i < k,} be a strongly mizing triangular array of square
integrable centered random variables, which satisfies (1.2), (2.2) and in addition for every

e>0 i
1 n
ZEfml \&ni| > €0,) = 0 as n— 0. (2.3)
n i=1

Then
W,(t) 2 W(t) (2.4)

where W, (t) is defined by (2.1) and W (t) denotes the standard Brownian process on [0, 1].

It follows from Lemma 3.1 below, that condition (2.2) is immediately satisfied when p} < 1
and we derive

Corollary 2.1 Let {&,:;1 < i < k,} be a strongly mizing triangular array of square
integrable centered random variables which satisfies (2.8) and p; < 1. Then (2.4) holds.
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The next corollary is motivated by the asymptotic behavior of linear processes, where the
main part of nonstationarity comes from nonrandom normalizers.

Corollary 2.2 Suppose { Xy} is a strongly mizing sequence of random variables which
is centered and {X?} is a uniformly integrable family. Consider the triangular array of
random variables {a,x Xk, 1 < k < n} where ay are numerical constants and denote
02 = Var(3, an; X;). Assume pf < 1 and maxi<g<y |ank|/on — 0 as n — co. Then
(2.4) holds where W, (t) is defined by (2.1) with & = ankXg; 1 < k < n.

Other class of triangular arrays when the condition (2.2) is simplified are weakly (second-
order or covariance) stationary triangular arrays of centered variables that is

E§m=0,1§1§n, and E[é-mé.n(z—l—])]:E[gnlé.n(l—l—])] :j:(],...,n—l,izl,...,n—j

In this case, we introduce a weaker version of (2.2)

E
lim sup —2L < C (2.5)

n—00 On

Corollary 2.3 Let {&,;1 < i < n} be a strongly mizing weakly stationary triangular
array of square integrable centered random variables which satisfies (1.2), (2.8) and (2.5).
Then (2.4) holds.

Finally, when &, = Xy, n=1,2,..., 1<k <n, 02 =Var(X; +...+ X,,) and {X;} is a
weakly stationary sequence, Theorem 2.2 gives as a corollary:

Corollary 2.4 Suppose { Xy} is a strongly mizing weakly stationary sequence of random
variables which is centered and { X2} is a uniformly integrable family. Assume

lim p; <1 and lim 02 = oo
n—oo n—oo

Then (2.4) holds.

Corollary 2.5 Suppose { Xy} is a strongly mizing weakly stationary sequence of nonde-
generate random variables which is centered and {X}?} is a uniformly integrable family.
Assume pi < 1. Then lim,_, 02 = 0o, and (2.4) holds.

3 Proofs

The proof of Theorem 2.1 uses the following two lemmas. The first lemma gives bounds
for the variance of partial sums in terms of a coefficient based on the correlation of sums.
It is Lemma 1 in Bradley (1992).

Lemma 3.1 Suppose 0 < r < 1. Suppose {X1,Xs,..., X} is a family of square inte-
grable centered random variables such that for any nonempty subset

Sc{L,2,...,n} S ={1,2,...,n}—S



corr (ZXk, > Xk) <r

kes keS*
Then

2
1—r 1+r &
EX} < E X | < EX?
1—{—7‘Z (,czl k) _1—7"k§1 k

The next lemma gives estimates of higher moments of partial sums. It is Theorem 1 in
Peligrad and Gut (1999). Its first part (3.1), for 2 < ¢ < 4 is due to Bryc and Smolenski
(1993).

Lemma 3.2 Let {X;};>1 be a sequence of random variables and set S, = Y51 X, n > 1.
Suppose that EX; = 0 and that E|X;|? < oo for every i > 1 and for a certain ¢ > 2. In
addition suppose p; < 1. Then there ezists a constant D(q, pt), depending on q, and p7,
such that:

n q/2
E|S,|? < D(q, p}) <ZE|X 9+ (Z EX3> ) , for all n. (3.1)
=1

For a certain constant D'(q, p}), we have

E max 8] < D'(q, pi)

1<i<n

q n n q/2
(Elrgiasxn\si\) +§E|Xi\u (;E)@) ] for all n. (3.2)

The proof of Theorem 2.1 is based on the following new proposition:

Proposition 3.1 Let {Y;}i>1 be a sequence of square integrable centered random vari-

ables. Assume that p7 < 1. Then,
< 32 K(p}) Z EY?;

Proof. For a positive integer n, define

F max
1<i<n

> Y;
7=1

where K = K(p}) = D'(4,p}) + 15

1/2

Z Y; znj EY? (3.3)

1<i<n

sup (E max

/5

where the supremum is taken over all sequences {Y;} of square integrable centered random
variables with pf({Y;}) < pf.
Fix such a random sequence {Y;} and in addition without loss of generality assume

that .
Y Var(Y;) =
j=1



Let M be a positive integer that will be specified later. For 1 < 57 < n define:

& = Yilgy<m-1) = BYil gy <ar-r2)

and
M = Yily,sm-12) — EYil(jy, s p-172)
so that i | |
LY =26+
j=1 j=1 jor
Since ) n
S Elny| < 2MV2 S EY? = 2M?
i=1 =
we get
Elrga;% ];Yg < Ef?f‘g’% j;{:j +oM/?

To estimate £ maxi<j<p, E;-:l @‘, we shall use a blocking procedure.

Take my = 0 and define the integers my, recursively by

Jj=mp-_1+1 M

n 1
my :min{m,m > myg 1 Z Ef? > —}

Note that, if we denote by ¢ the number of integers produced by this procedure, i.e:
mg, M1, ..., My_1, we have

-1 mp /—1
1> ¥ Egj?>7 so that ¢ < M.

k=1j=mp_1+1

We partition the sum }°7_; &; in partial sums

where X = Y72, & for 1 <k < £—1 and for convenience, m, = b that is X, =
E:?ZWM—1+165'

Obviously
i k J
Emax|> & < Pmax > Xl + Emax | max | > &
=1 =M=t 5= == t=mp_1+1
= I+41I (3.4)

We evaluate the two terms in the right hand side of (3.4) separately:
By Cauchy-Schwartz inequality

l ¥/
I <3 EIXy| < Y (BEXHY?
k=1 k=1



By Lemma 3.1, since K > (1 + p3)/(1 — p}), for all 1 < ¢ < £, we have:

mp
E(X)) <K > Eg.
t:mk_1+1
By using now the Cauchy-Schwartz inequality for sequences we obtain
i 1/2
YEE| < (KM,

i=1

1/2
V4 mg
ngwz( > Ef?) < (KM)'?

k=1 \t=mp_1+1

To estimate II we notice that
) 4
J

Y&

t=mp_1+1

l
(IN*<> F max
k=1

Me—1<j<mg

By Lemma 3.2, relation (3.2) and since K > D'(4, p}), we obtain:

4
<

> &

E  max <
Mp—1<J<myg t=mg_ 141
j mkfl mkfl 2
4 4 2
K |E' —max &+ >, E&g+| Y. Eg
Me—1<I<Mk |y 41 t=mg_1+1 t=mp_1+1

We estimate each term in the right hand side of (3.5) separately.
By the definition of my

mkfl 9 1
> B < —
t=mp_1+1 M

so that by using our notation (3.3) for a, and the definition of & we obtain

mfl A 4 mil 5 4
Egt S FYa Eft S 270
t=mp_1+1 M t=mp_1+1 M2

and

J
Pomax | Y &
mr_1<J<mg t=mp_ 141

4 Tt 2 : a,

n

< O, Z Egt < 2
t=

Overall, by (3.5) and above considerations we obtain

at 4 1
IN'<K|-2+— 4+ —
ID" < lM+M+M]

Now by (3.4) and our estimates for I and II we get

Y 26
j=1 7j=1

< [(KM)1/2+(K/M)1/4an+(5K/M)1/4] eSVet

< F max +2M'/?

1<i<n

FE max
1<i<n
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Therefore, by the definition (3.3),
an < (K/M)"*a, + (KY? +2)M'? 4+ (5K/M)Y*
Now we select M = M (p}) to be:
M= M(p}) =[16K]+1
and since K > 1, we obtain
ay < %" +KV2(1 4 2K Y2)ARY2 (1 + K2 /4) +1 < “2—” +16 K

which implies the desired result.

Proof of Theorem 2.1 The conclusion of Theorem 2.1 is an easy consequence of
Proposition 3.1 after a standard reduction procedure. Let N be the integer mentioned
in Theorem 2.1 such that py < 1. We consider now N sequences of random variable

Notice that for each 4, the first interlaced mixing coefficient for {Y;; : j > 1}, pf <
pn < 1} is smaller than p} and therefore strictly smaller than 1. We can apply Lemma
3.3 to each of the N subsequences. The rest of the proof is standard and it is left to the
reader.

3.1 Proof of Theorem 2.2: Normalization and truncation

It is clear that conditions of Theorem 3.2 are scale invariant so that without loss of
generality we assume that

kn
o2 =Var(d &) =1.
i=1

Therefore, by condition (2.3), there exists a sequence of positive numbers €, — 0 such
that

kn
S EEI(|€ni] > €) = 0 as n — oo, (3.6)
i=1
We truncate now at the level ¢,.
Define
and

Denote by W/ (t) = >/ nu and by W/ (t) = 7%, @ni where vy = inf{m;1 < m <
kn,o2 > t}. Notice that,

Wa(t) = W, (t) + Wy (t).
By Theorem 2.1 and (1.2) we can find a constant K = K (p, p;), where p5 < 1, which does
not depend on n, such that



1<i<kn

i 2 kn
E[sgp W"®)|]? < E max (Z gonj) < KDY EEI(|&nil > €n). (3.7)
=1 i=1

which converges to 0 by (3.6) as n — oco. Therefore W) (t) is converging weakly to 0 and
the limiting distribution of W, (¢) is the same as the limiting distribution of W, (¢) if the
last one exists: (i.e. W, (t) — W' (t) 2 0 as n — c0.).

To study the limiting distribution of W/ (¢) we shall apply Theorem 19.2 in Billingsley
(1968).

It is very easy to prove that the strong mixing condition implies that W/(t) has
asymptotically independent increments. According to Theorem 19.2 and the Corollary
from page 56, both in Billingsley (1968), we have only to show:

(i) E[W.(t)]> = t as n — oo,
and, for all ¢ fixed for a certain 6 < 1 — ¢, we have:

(ii) The family

J=ve

1 : ?
soax | 2y
n

is uniformly integrable in n.

To prove (i) we have to establish that lim,_,. E (X%, 7mi)° = t which is equivalent to
lim, o0 E (X%, £ni)” =t by (3.7). Let | X|| = (E[X]?)"/? denote the norm in L. Since

vi—1
i=1

Vit
i=1

by the definition of 14, this relation gives:

Vi< |52 < Vit
1=1

In order to prove (i) we have only to notice that Lindeberg condition (2.3) implies
To establish (ii) we shall use Theorem 3.1 with ¢ = 4, and the definition of 7,;.
For a certain constant D(p, ;) with pj; < 1 we have

. 4 r 2
i Vits Vits
F| max (Z 77m') < D(p, P;) Z E(n)* + (Z Eniz)

v <1<y, : : ;
tSXUSVE4S j=u 1=y 1=V

IA

1=Vt =

Vits Vi+s 2
D(pap;;) ei ZEniz + ZEniz
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By condition (2.2) and (3.7), for sufficiently large n,

Viys kn kn kn
Y Eny <> En <2 E¢; <2C Var (Z §m-> =92C.
=7 i=1 i=1 i1

Thus, random increments {W (t) — W/(s) : t,s € [0,1], n > 1} have uniformly bounded
moments of order 4. This fact together with the strong mixing condition, a uniform

infinite smallness |n,;| < 2¢, and a standard mixing inequality (the constant comes from
Theorem 1.1 in Bradley and Bryc (1985))

|E(XY) - E(X)E(Y)| < 2ma?(0(X),o(Y)EYH(X)EV4(Y?)

implies that corr[W,,(t), W, (t+0) — W, (t)] = 0 as n — oo uniformly in ¢, with 0 < ¢ <
t+ 06 <1 so that

Vits 2 Vi+s 2

A B L i) =l B 2 &) =9
=Vt 1=Vt

uniformly in ¢, with 0 < ¢ < ¢4 6 <1 and thus by condition (2.2)

Vi4s Vits

limsup > EnZ;, = limsup Y E&Z < C6.
n—

n—00 = =

As a consequence

vi<i<Vits

J=vt

. 4
limsupE | max (Z 77m') < D(p, ﬁ;)52

which proves (ii) and completes the proof of this theorem.
The proofs of Corollary 2.1-2.5 require only to verify the conditions of Theorem 2.2
which can be found in Peligrad (1996), and the arguments will not be repeated here.
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