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Abstract
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1 Introduction

One of the most useful techniques in obtaining limit theorems for weakly dependent
random variables is the coupling of the initial sequence with an independent one. Gen-
erally speaking a coupling theorem enables us to replace the initial dependent sequence
by an independent one, having the same marginals. Moreover, a variable in the newly
constructed sequence is independent of the past of the initial sequence and it is closed, in
some sense, to the variable having the same rank. This approximation has to be carried
out in a manner that permits limit theorems for the independent random variables to
carry over directly to the dependent ones.

The idea of coupling is going back at least to Doeblin (1937) for the case of the
Markov chains with a countable state space and further extended for more general Markov
processes by Vasershtein (1969) and Griffeath (1975). The problem of coupling was also
considered in ergodic theory, in the context of Bernoulli shifts by Ornstein (1974), and
Shields (1973).

This method gained popularity for obtaining limit theorems for dependent random
variables since the publication of two articles by Berkes and Philipp (1977, 1979). Their
approach is based on estimates of the Prohorov-distance and the Strassen-Dudley Theorem
(Strassen (1965), Dudley (1968)). This method was succesfully exploited by many au-
thors including Berkes and Philipp (1977-78), Philipp (1979), Kuelbs and Philipp (1980),
Dehling and Philipp (1982), Berger (1982), Dabrowski (1982), Eberlein (1983), Dudley
and Philipp (1983), Borovkova, Burton and Dehling (1999).

In parallel, various approaches to coupling have been developed by different authors.

One of the method can be called the ” partition method” and is similar to the one used
in the ergodic theory setting. It was developed in papers by Goldstein (1979), Berbee
(1979), Schwarz (1980), Bryc (1982), Bradley (1983) and Peligrad (2001-a). A variant of
this method will be presented in the next section.

Another approach, developed first by the Hungarian school for deriving some ap-
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proximation theorem for independent random variables, is the quantile transform. Major
(1978) extended this construction to the dependent case introducing the conditional quan-
tile transform. The method was further exploited by Rio (1995) and Peligrad (2001-b).

The paper is organized as follows. In Section 2, we shall present some coupling results
based on the last two methods. Estimates of the distance between a variable in an original
sequence and the corresponding one in the newly constructed one will be given in terms of
mixing coefficients. Let us mention that the estimate given at the point (f) of Theorem 2.5
is new. Section 3 is devoted to the application of the coupling results to derive uniform
laws of large numbers for dependent processes (some results in this section are new),
whereas in Section 4, we show the importance of such coupling results for obtaining the
central limit theorem for dependent sequences.

Throughout the paper, the notation I(A) means the indicator of A and [.] the integer

part as usual.

2 Some results on coupling

In this paper we shall use the following coefficients of dependence. Let (2, 7, P) be a
probability space and let A and B two o-algebras of 7.

Define the strong mixing coefficient by:

a(A,B) = sup |P(ANB)—PAPB),

A€ A,BeB

the version A of the maximal coefficient of correlation by:

AA,B) = sup [P((ANB)- P(A)P(B)|/P'*(B),

the ¢ mixing coefficient by:

¢(A.B) = sup [P(ANB)-PAPB)/P(B)



and the absolute regular coefficient by:

BLAB) = Ssup D" ST [P(4; 1 By) — B(A)B(By)|

=1 j=1
where this latter sup is taken over all pairs of partitions {A;,---, Ar} and {By,---, By}
of {2 such that A; € A and each B; € B.
Obviously a(A, B) < A(A,B) < p(A, B) and «(A, B) < 8(A,B) < ¢(A, B).
Throughout the paper we shall make use of the short notation v(X,Y) to denote
v(o(X),o(Y)), v being one of the dependence coefficients.

We shall now recall a well-known coupling result which characterizes the coefficient

of absolutely regularity.

Theorem 2.1. Let X and Y be random variables defined on (2, T,P) with values in a
Polish space S. Let o(X) be a o-algebra generated by X and U be a random variable
uniformly distributed on [0, 1] independent of (X,Y’). Then there exists a random variable
Y* measurable with respect of o(X)V o(Y) V o(U), independent of X and distributed as
Y, and such that

P(Y #Y*) = B(X,Y).

This theorem is frequently named Berbee’s Lemma (1979). Related results can be
found in works by Goldstein (1979), Berkes and Philipp (1979), Schwarz (1980), Bryc
(1982), Dehling and Philipp (1982) and, in the context of ergodic theory in Ornstein
(1974) and Shields (1973). In all these papers, the constructions of the variable Y* are
equivalent. We shall sketch here the construction by Bryc (1982) which is versatile and
leads to further interesting estimates for the distance between Y and Y*.

Because the variables are S-valued, by completness, according to the result in Bryc
(1982), we can reduce the problem to the case of discrete S-valued random variables.
Leaving the technical aspect apart, the main step of the construction is to define the

following probabilistic structure :



With the notation e, , :=P(X =2,Y =y) — P(X = 2)P(Y = y), we have

¢ ot o
€., E
T,y T,2 .
e 27y
t “x,t

PX=2,Y =y Y =2) = qp(X =0)P(Y =y) ifz=yande,, >0

| P(X =2,Y =y) if z=yandez, <0.

It is easy to verify that with this construction, we have
1) Y* distributed as Y,
2) Y* independent of X,
and for all A, B and C Borel sets of S,
JIPX €AY eBY#Y )= 4, pPX=2Y=y)-PX =z)P(Y = )",
DPX e AY €CY£Y")=3 1) ecPX =2,V =y) -PX =2)P(Y =y)] .

By this construction, one can easily obtain the following proposition.

Proposition 2.1. Let Y be a random variable defined on (2, T, P) with values in a Polish
space (S,d). Let p be a positive number and s in S. Let Y* be constructed as in Theorem
2.1. Then, for all x > 0

() P(Y # V*|0(X)) < sup peoy) [P(BIo(X)) — B(B)| 0.5,

(i) P(d(Y,Y™) > z) < 20(X, V)P (d(Y, ) > z/2),
and if we assume that dP(Y, s) is integrable, then

(131) E(dP(Y,Y™)) < 22p(X,Y)E (dP(Y,s)) .

Point (47) comes from Bryc (1982). Point () is probably well-known (a proof can be
found in Peligrad (2001-a)). Point (i7i) is obtained by integrating with respect to z in

(id).

We shall establish now a new result for estimating the expectation of the distance
between Y and Y™ in terms of the absolutely regular coefficient. Before stating it, we

need to introduce the following definition : For any nonnegative random variable W,



define the "upper tail” quantile function via
Qw(u) =inf{t > 0:P(W > 1) <u}.
With this notation, we have

Proposition 2.2. Let X and Y be two random variables defined on (2, T,P) with values
in a Polish space S. Let p be a positive number and s in S and assume that dP(Y,s) is

integrable. Let Y™ be constructed as in Theorem 2.1. Then for every positive p

B(X,Y)
E(d(Y, V")) < 27+ / Qurys) ().
0

Remark 2.1. In the case when p < 2, with an other approach the constant is sharper,

namely 22P.
Remark 2.2. 1) If]E(dpM(Y, s)) < 400 for a d > 0, then
E(@(V, ") < 272575 (X, V) (B (¢9(v,5) )7
2) Since
B(X,Y)
E(P(YV)1(d0,9) > QoY) < [ Qoo (i
< E(&(Y,9)1(d(Y, 5) > Quv (B(X,Y))) ),

we get

E(dp(Y’ Y*)) < 2p+2E(dp(Ya S)][ (d(Ya 8) > Qd(Y,s)(ﬁ(Xa Y))) ) :

Proof of Proposition 2.2
Set T := Qq(v,s) (B(X,Y)) and notice that the triangle’s inequality and the fact that



Y and Y* have the same distribution, yield for all s € S

E(#(Y,Y") = E(@(Y, Y)Y #Y7))

IN

E{(d(Y,s)+d(Y*,s) 1Y #Y*)}
PE(dP(Y,s) LY # Y*)) + 2PE(dP(Y*, s)L(Y # Y*))

IA

IN

PE(d"(Y, s)I(d(Y,s) < T)I(Y #Y™)) + 2°E (d” (Y, s)1(d(Y, 5) > T))
PR (P (Y™, ) W(d(Y*,5) < T)I(Y # Y*)) + 2K (d”(Y*s)L(d(Y*s) > T))

L+L+I7+ 1.
First we use Theorem 2.1 which yields
I < 2PTPB(X,Y).
Now by using the equality
(2.1) r,s) (B Y)) = Qanivis) (B(X,Y))

combined with the fact that Qg (v,s)(u) is a nonincreasing function, we get

B(X,Y)
(2.2) Il S 21)/ de(y,s)(u)du
0

In order to treat I, let us mention some results. Recall first that if U is a random variable
uniformly distributed on the interval [0, 1] and if W is a nonnegative random variable,

then the r.v. Qw (U) has the same distribution as the r.v. W, and then

Mmzébmwm

This last equality applied to the r.v. dP(Y, s)I(d(Y,s) > T) entails that

1
E(dp(Y, S)][(d(}/, 8) > T)) = / QdP(Y,s)I(d(Y,s)>T) (u)du
0
We also have

Qar(v,e)(u) if u < B(X,Y)

Quav(v,)1(d(v,s)>1) (1) <
0 ifu>pB(X,Y).



From these last considerations we derive that

B(X,Y)
(23) IQ S 2]7/ de(Y’S)(U)d’U, .
0

Gathering (2.2) and (2.3) and since similar bounds are valid for I7 and I, one gets the

result. O

Let us mention now the following result of Bradley (1983) : ” For two o—fields A
and B such that one of them (say A) is completely atomic with exactly N atoms, one
has §(A,B) < Na (A, B).” By using this result, we can easily see that some coupling
results involving the strong mixing coefficient can be obtained for Y taking its values in
S and having a finite numbers of values, and the result will strongly depend on N. For
deriving more general strong approximation theorems for random variables taking their
values in a Polish space, under the strong mixing condition, we would like to mention the

two following results due to Bradley (1983).

Theorem 2.2. Suppose Y is a random variable, defined on a probability space (2, T ,P)
and taking its values in a Polish space (S,S). Suppose A is a o-field C T. Suppose U is
a uniform-[0, 1] random variable that is independent of the o-field AV o(Y).

Suppose N is a positive integer, and H := {Hy, Ho, ..., Hy} is a partition of S, with
H; €S8 foralli=1,2,...,N.

Then there ezists a random variable Y* which takes its values in (S,S) and is mea-
surable with respect to the o-field AV o(Y)V o(U), such that Y* has the following three
properties:

(a) Y* is independent of the o-field A.
(b) Y* has the same distribution (on (S,S)) as the random variable Y .
(c) One has that

P(Y* and Y are not elements of the same H; € H) < (8N)2a(A,Y) .



This theorem is taken from Bradley (1983, Theorem 2), and we can mention that
it sharpens “codification” of arguments from the proofs of earlier strong approximation

theorems in Berkes and Philipp (1977, 1979) and Bryc (1981).

Next theorem and comments that follows are due to Bradley (2001) in a personal

communication.

Theorem 2.3. Suppose (S,d) is a Polish space. Let S denote the o-field on S generated
by the open balls in the metric d.

Suppose Y is a random variable, defined on a probability space (2, T,P) and taking
its values in (S,S). Suppose A is a o-field C F. Suppose U is a uniform-[0,1] random
variable which is independent of AV o(Y)

Suppose further that € >0, 6 > 0, N is a positive integer, D € S, P(X € D) > 1 -6,
and that there exist points a1, as, -..,axy € D such that Va € D,3k € {1,2,... N} satis-
fying d(ag,a) < e.

Then there ezists a random variable Y* which takes its values in (S,S) and is mea-
surable with respect to the o-field AV o(Y)V o(U), such that Y* has the following three
properties:

(a) Y* is independent of the o-field A.
(b) Y* has the same distribution as the random variable Y.

(¢) PA(Y,Y*) > 2) < 6 + (8(N + 1))/2a(A,Y).

This theorem evolved through several strong approximation theorems:

1. Berkes and Philipp (1977, Theorem 2 (special case)) involving the measure of
dependence «f.,.) and random variables taking their values in Z¢ for positive integers d.

2. Berkes and Philipp (1979, Theorem 2), involving the measure of dependence (., .)

and random variables taking their values in complete separable metric spaces. The “struc-



ture” of the statement and proof of that result is in a certain sense imitated by the
statement and proof of Theorem 2.3.

3. Bryc (1981), involving the measure of dependence «f.,.) and real-valued random
variables.

4. Bradley (1983, Theorem 3), involving «(.,.) and real-valued random variables.

5. Novak (2000, Lemma 4), involving «f(.,.) and random variables taking their values

in Z? for positive integers d.

In the context when Y is a real random variable, we would like to mention the following

useful statement which is a corollary of Theorem 2.3 (see Theorem 3 of Bradley (1983)).

Theorem 2.4. Suppose (S,d) is a Polish space. Suppose X and Y are random variables
taking their values on S and R, respectively. Suppose U is a uniform-[0,1] random vari-
able which is independent of (X,Y); and suppose q and -y are positive numbers such that
g < |IY|ly < oo. Then there ezists a random variable Y* which takes its values in (S,S)
and is measurable with respect to the o-field o(X)V o(Y) V o(U), such that Y* has the
following three properties:

(a) Y* is independent of X.

(b) Y* has the same distribution as the random variable Y.

() B([Y* —Y|>q) < 18(|Y]],/a)" @ (a(X,Y))?/ .

This result has been widely used in the case when Y is bounded (i.e. v = +o0) for

instance in works by Bosq (1998) and Guillou and Merlevede (2001).

Next theorem gathers a variety of coupling results for S-valued sequences. The upper
bounds for the discrepancy of the variables with the same rank are given in terms of
mixing coefficients. The points (a), (b), (d) and (e) are proven in Bryc (1982). The point
(c) is proven in Peligrad (2001-a). The point (f) is new.
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Theorem 2.5. Let (X,,n > 1) be a sequence of random variables with values in a Polish
space (S,d). Denote by FI' = o (X1,...,Xp). Then, we can redefine {Xn,n > 1} onto a
richer probability space (which supports a sequence (0,,n > 1) of independent uniformly
[0,1]-distributed random variables and independent of {X,,n > 1}) together with a se-
quence {X;’;, n > 1} of independent random variables such that : for each 1 < m < n, we
have

a) X7, is independent of F" !,

b) X} has the same distribution as X,

¢) P (X # X5 | FI" 1) <Suppeyx,,) [P (Xm € BIF") = P(X, € B), a.s.

d) P (X # X)) = B (F1" 7 0(Xm)),

e) P(d(Xm, X2) > ) < 20(F" ", 0(X))P(d(Xmm, s) > 2/2), for all z >0
and if B(dP(Xpm, s)) < oo for a positive p and s € S,

BF 0 (Xm))
D E@(X;) <2 [ Qoo w)du
0

(
(

Remark 2.3. Of course now the following question arises : 7 does the point (f) of
the above-mentioned approrimation theorem also hold in the context of strongly mizing
sequences with values in an infinite dimensional space? ”

Following Dehling (1983), it turns out that the answer is negative without any ad-
ditional assumptions. In his paper he has constructed an example of strongly mizing
sequences of {2-valued random variables X,, with values in an infinite dimensional space,
which cannot be approzimated by independent random variables X, in such a way that

X, — X converges to zero in probability.

m
By integrating (c) of Theorem 2.5 on the set ﬂ (X; # X]), we easily deduce by an
i=1
iterative procedure the following useful corollary which estimates the joint distributions
of discrepancies between (X;);>1 and (X;);>1. Before stating it we need to introduce the

following coefficient of dependence : let (X,,,n > 1) be a sequence of random variables

with values in a Polish space S. For m > n we denote by F"* the sigma-algebra generated
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by the variables (X, X, 11, -+, X;) and set
(2.4) @ = supsup {[P (B|A) — P(B)|;P(A) #0,A € 7", B € Fily
m>1
The definition of ¢y is using the sigma-algebra generated by only one random variable in

the future after £ steps. This coefficient has already been used in many papers including

Deddens, Peligrad, Yang (1987) and Rio (2000).

Corollary 2.1. (Peligrad (2001-a))

Under the setting of Theorem 2.5, we obtain that : For all 1 < iy < iy < -+ < ip,

(2.5) P (ﬁ X, # X;;) <@
j=1

Moreover for 1 <4 <n
2n+1 ~£

< ¥1
~V2r n

(2.6) P(X; # X] at least ¢ times for 1 <i < n)

Due to Remark 2.3, the case of strong mixing processes has to be analyzed in the real
case and with a different approach that is called conditional quantile transform.

In order to construct Y* we shall use, as in Rio (1995), the method based on the
conditional quantile transform, introduced and studied by Major (1978) :

Let us denote: F(y) = P(Y <vy), Fu(y)=P(Y <y|A), and

V:FA(Y—0)+U(FA(Y)_FA(Y_O))7

where U is a random variable uniformly distributed on [0, 1] and independent of Y and

A.

By Lemma F.1 in Rio (2000), page 161, or by the proof of Bradley (2000), we can see
that that P(V < z|A) = z, a.s., and, as a consequence, by integrating this expression,
we deduce that V' is independent on A and uniformly distributed on [0,1]. In addition:

F' (V) =Yas,
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where we use the notation of generalized inverse: h™'(y) = inf{t € R: h(t) > y}.
We define now:

Y*=FY(V).

According to Major (1978), this choice of X* minimizes the distance in I; between X
and any other variable distributed as X and independent of A.
By the above notations and considerations, since V' is uniformly distributed on [0,1],

clearly:
(2.7) EY*-Y|=EF'(V)-F,/ (V)= ]E(/0 [FH(u) = Fy' (u)|du)

In order to obtain an upper bound for (2.7), we shall introduce the following weaker
version of the coefficients of dependence : Let (€2, 7, P) be a probability space and let X
be a real random variable defined on ). Let A and B two c-algebras of 7.

Define the strong mixing coefficient by:

a(A,X) = AeﬂlpelR P((X >z)NnA)—P(X >z)P(A),

the A-version of the maximal coefficient of correlation by:

A4, X) = WSup [P(((X > 2)NA) ~P(X > 2)P(4)|/PV*(X > 2),

the ¢ mixing coefficient by:

?(A X) = AG?EERIP((X > z)NA) - P(X 2 2)P(A)|/P(X > z)

Theorem 2.6. (Peligrad (2001-b)) Let Y be a real -valued integrable random variable
that is defined on a probability space (0, T,P). Suppose A is a sub o-algebra of T. Suppose
U is a uniform random variable on [0,1] that is independent on the o-algebra generated

by A and Y. Then, there is a random variable Y*, which is measurable with respect to
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the o-algebra AU o(Y) U o(U) with the following properties:

(a) Y™ is independent of the o-algebra A

(b) Y™ has the same distribution as X
a(AY)
© EBY-vi<z[ Qi
0
() EY — V| < 2N(A, Y)/ P2(Y| > £)dt
0

(d) EY —Y" <2p(A Y)EY].

Remark 2.4. The point (c) extends a result of Rio (1995) who considered the case where
Y is bounded. The point (d) improves on the constant used in the proof of Corollary 2.4
of Bryc (1982).

The idea of the proof of Theorem 2.6 is the following. Since Y = Y* — Y~ we shall

assume for simplicity that Y is almost surely positive. (2.7) gives
EY*—Y|=E (/OO B(Y > u) — B(Y > u|A)\du) .
0
By classical arguments, we get
EP(Y >u) —PY > ulAd)| < jlégﬂ?((Y >u)NA) —PY >u)P(A)|.

Now, by taking into account our definition of the mixing coefficients we obtain the fol-

lowing upper bound estimates :

EP(Y > u) —P(Y > ulA)|

IN

min (a(A,Y),P(Y > u)) ,
EPY >u) —PX >uld)| < XAY)P2(Y >u),
EPY >u) —PY >uld)] < BAY)PY > u)

and the results follow by integrating the above relations on [0, c0).

Concerning the case of a sequence of real random variables, Theorem 2.6 gives the

following useful result.
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Theorem 2.7. (Peligrad (2001-b))Let (X,,n > 1) be a sequence of real-valued ran-
dom variables. Denote by F' = o (X1, ..., X). Then, we can redefine {Xn,n > 1} onto
a richer probability space (which supports a sequence (0,,n > 1) of independent uniformly
[0,1]-distributed random variables and independent of {X,,n > 1}) together with a se-
quence {X;’;, n > 1} of independent random variables such that : for each 1 < m < n, we

have
a) X7, is independent of F" !,

b) X} has the same distribution as X,
a(F7 T Xm)

af
¢) E\ Xy — X5| <2 / Qe (u)du,
0

&) B = X3 < AP X) [PV (Xl > 1)
0
&) Bl X — X5 < 25(F, X | X,

Let us notice that if (X,,n > 1) is a sequence of real-valued random variables such
that for all n > 1, P(a, < X,, <b,) = 1, then, by using Theorem 2.4 and the relation
(5.25) in Rio (2000), we can redefine { X,,,n > 1} onto a richer probability space on which
there exists a sequence {X;:, n > 1} of independent random variables such that, for each

n > 1, X,, and X have the same distribution and
(28 BLX, — X7 <320, — ) (@, X0)"
Compare to point (¢) of Theorem 2.6 which gives in this case

E| X, — X5 < 2(by — an)a(F 7, X)),

the inequality (2.8) seems to be less powerful. However (2.8) can lead to better upper

bound estimates when (b, — a,,) increases fastly when 7 tends to infinity.
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3 Application to the uniform laws of large numbers
for dependent processes

We shall see now how the above-mentioned coupling results are very useful in proving

asymptotic results and in this section we focus on the uniform laws of large numbers.
Uniform laws of averages extend the classical laws of large number from a single

function to a collection of such functions. The uniform law addresses the question to find

a class F of functions such that

(3.1) lim sup = |3 £(X;) — EF(X,)| =0,

in some stochastic sense.

If the convergence in (3.1) holds with probability one, F is said to be a Glivenko-
Cantelli class. Alternatively F is said to satisfy a uniform law of averages with respect
to the sequence (X;);>1.

Vapnik and Cervonenkis (1981) found necessary and sufficient conditions under which
a class of functions F is almost surely uniformly convergent with respect to an i.i.d.
process (X;)i>1. The conditions involve the asymptotic behavior of covering numbers
associated with the class F and sample sequences of the process (X;);>1. For more details,
we refer the reader to Vapnik and Cervonenkis (1981) or Pollard (1984).

Concerning weak dependent sequences, the uniform convergence has been studied by
many authors. Among them Philipp (1982), Yukich (1986), Massart (1988), Yu (1991),
Doukhan, Massart, Rio (1995). All these results used specific rates of convergence to zero
of the mixing coefficients.

In this paper we present recent and new results about the uniform law of large numbers
for weak dependent sequences. This section is divided in several parts. First we deal with
absolutely regular sequences, after with ¢-mixing sequences and finally with strong mixing
sequences. In these results no condition is imposed on the rates of convergence to zero of

the mixing coefficients.
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Since the proofs are mainly based on coupling results, we shall assume in what in fol-

lows the probability space to be large enough to accomodate all the variables constructed.

Let F be a class of real-valued measurable functions on S. A measurable function
F : S — Ris said to be an envelope for F, if |f(x)| < F(x), for every f € F. The class F
is said to be uniformly bounded if for some 0 < K < oo, F' = K is an envelope for F. If
the class F is uncountable it must satisfy regularity conditions in order to insure that no
problems of measurability will arise when considering quantities such as the supremum.
Following Pollard, we use the term permissible to indicate that the class F satisfies such

conditions ( for more details see Dudley (1978) or Pollard (1984)).

3.1 The case of absolutely regular sequences

Nobel and Dembo (1993) obtained an uniform law for the class of absolute regular
sequences without imposing any condition on the rate of convergence to 0 of the de-
pendence coefficients. In fact they obtained the almost sure uniform convergence for
absolutely regular strictly stationary sequences as a direct consequence of uniform con-
vergence for independent random variables without imposing any additional conditions

on the class of functions. Their result is the following :

Theorem 3.1. Let (X;);cz be a sequence of strictly stationary S-valued variables defined

on (Q,T,P) and such that ( .7:+°°) — 0 asn — 0o. Let (X7)jez be an independent

sequence with values in S such that for all j € Z X} and X; have the same distribution.
Let F be a permissible class of real-valued functions on S, with an envelope F' such that

F € Ly (P) and such that

su —Ef(X7))| =0 a.s..
sup | ;1 f(X7))
Then
1 n
sup |— X;) —Ef(X; — 0 a.s.
oup 13 (%)~ BS(X)
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Let us notice that the coefficient of absolute regularity used by Nobel and Dembo
involves all the future of the process which means that the process is ergodic and the

proofs of their theorem benefitted by the results in ergodic theory.

3.2 The case of p-mixing sequences

Concerning the case of @-mixing sequences, Peligrad (2001-a) has obtained an uniform
strong law without imposing any rates of convergence to zero on ¢, and without requiring
ergodicity. She has shown that the class of strictly stationary and ¢-mixing sequences
satisfies a uniform law of averages if an independent sequence having the same marginals
does. Therefore the result available for independent sequences translates to similar results

for ¢-mixing sequences. Her result can be formulated as follows :

Theorem 3.2. Let F be a permissible class of real-valued functions on S having envelope
F € Ly (P). Then F satisfies an uniform strong law of averages with respect to a strictly
stationary ¢-mizing sequence of S-valued random variables if it satisfies the same law with

respect to an i.1.d.

The proof of the above theorem can be divided in two steps: the first one involves a
class of functions F which is uniformly bounded and the second one involves a truncation
argument. In fact by analyzing these two steps, we can give two new results on the
uniform law of convergence for ¢-mixing sequences without imposing stationarity. This

is the aim of the next statements.

Proposition 3.1. Let (X;);>1 be a sequence of S-valued variables such that ¢, — 0 as
n — oo. Let (X;)j21 be an independent sequence such that for all j > 1, X7 and X; have
the same distribution. Let F be a class of real-valued functions on S which is uniformly

bounded and such that for a fired p > 1 and each 0 < 7 < p—1 we have

k—1
: : 1 * * _
(7) klglof«g Z ;:0 (f(X5) —Ef(X5,))| =0 as.,
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where X§ = 0.
Then

n

> () —EF (X))

(i7) lim sup =0 a.s.

n—oo fe}-

Proof of Proposition 3.1 Without loss of generality we may assume that the se-
quence {f(X;)};>1 has zero mean.

Let p be a natural number p < n. Denote by k£ = [ﬁ], and extend the vector
(X1,...,Xp,) to the sequence (0, X1, ..., X,,0,0,...). Define Yi = Xjpy;for0<i <k—1,

0<j<p-1. Foreach0<j<p-—1, consider the vector (Y

0jr- -+ Yg 1 ) constructed

in Theorem 2.5, and notice that

> 5%

Under assumption (7), the second term in the right-hand side term in the above inequality

1

kol

-1

[

n p—1

k
Ssuplz )= > > f;

n
fex =0 5=0

1=
+ sup —
feF kp

1§
<)

7=0 |z

tends to zero by letting n to tend to infinity and then p. Then it is enought to show that

k—1 p—1
3.3 lim sup — f(X fy:)|=0.
( ) n—00 feF TN Z i—0 j—0
By the triangle inequality we have:
k p—1 1 k—1
3.4 S5 )| < L o)
=0 j=0 =0
Fixj,0<j<p—-landletnb h that ¢, < ! Let ¢ [kl ! /1 ~]
ixj,0<j<p-landle e such tha ——. Let {;, = og——/ 1o .
We write
(3.5) (Zf ) ”)> =1 +1
where
=
= L3 (0 - 50 8 a0 £ < 1)
=0
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and

=13 (f() — SO T (2 0(Yiy #Y5) > fk-)

i=0
Since F is bounded, we can find C' > 0 such that for all f € F

) =

k—1

(3.6) L <CI (Z 1(Y;; # Yij) > Ek) a.s.
=0

and also

(3.7) L<c® 2 (log—2) /log g

By combining (3.4) - (3.7) we can find a constant K such that

n k—1 p—1 k—1
IS - S0 < K] (Z (Vi £ Y5) > ek) ¥
i=1 i=0 j=0 i=0

{log ﬁ] /log @,} a.s..

By applying now (2.6) of Corollary 2.1, it is easy to obtain via Borel-Cantelli lemma that

k—1

i=0
which yields

n k—1 p—1

1 1
lim sup — f(X;) — f) <K [log ] log, a.s..
i 3 1000 - 5555 ) < o o s
The result follows by letting p — oc. O

Remark 3.1. In view of the proof, Theorem 3.1 holds with convergence in probability

remplacing almost sure convergence everywhere.

In the next theorem we remove the condition of boundedness of the class of function
F and replace it with an integrability condition imposed on the envelope of the class.

However our result is now a convergence in probability instead of an almost sure result.
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Theorem 3.3. Assume that (X;);>1 and (X});>1 are as in Theorem 3.1. Let F be a class

of functions with an envelope F such that {F(X;)}i>1 is an uniformly integrable family

and
) 1 < s . P
Q) o 1 DS U06) ~BAKT)| 5 0.
Then
g 1 < P
(44) ?‘eljg E;(f(Xi) —Ef(X;))] = 0

Proof of Theorem 3.3

Once again we may assume that the sequence {f(X;)},;>1 has zero mean.

Let C be a positive constant and let f € F. Denote by f; = fI(F < C) and by
fo= fI(F > C). We obviously have:
(3.8)

sup ~ 3 £(;)

n
fer ™15

= sup —
fl:fe}—’n/

)|+ sup —
fZ’fej:

> (X)) = Ef (X

=1

Z ~Ef(X)| -

=1
By Proposition 3.1 and Remark 3.1, since the family {fi, f € F} has a bounded envelope,
we will obtain that the first term in the right-hand side of equality (3.8) converges to zero
in probability as soon as assumption (i) of Theorem 3.1 holds in probability. The following
statement together with assumption (i) of Theorem 3.3 prove this point.

Claim 1: Let (Z;);>1 be a sequence of independent S-valued random variables defined on

(Q,7T,P) and let F be a permissible class of real-valued functions on S such that

n

LS (42 - E(#)

=1

sup % o.

fer

Then for each p, p>1 and all 1 < iy < iy < --- < i < n, where k = [ﬁ] we have
b

Proof of the claim : The proof is based on the fact that if X and Y are two S-valued
random variables independent such that for all f € F we have Ef(Y’) = 0, then for all
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e>0

(39) P (sup /001> ) < B (sup 70+ 1) > <)

We give here a short proof of (3.9) based on an suggestion of Pollard (personal commu-

nication). Notice first that since Ef(Y') = 0 and X and Y are independent

fX)=E(f(X)+ f(YV)|X) .

Then
P (sup s )1 > ) = P (sup B (700 +1()|%) > )

< B (& (sup1r00)+ )X > <)

= P (B(sup () + FV)]1X) > e sup £ + £07)] < )

+P (E( sup /() + J(V)[X) > &, sup 700 + 1) > ¢
feF feF
< P (suplf(x)+ f0)] > ¢) O
feF
Now in order to treat the last term in the right-hand side of equality (3.8), it suffices to

notice that

n

> (B(X) —Efe(X

i=1

E sup Z]E|F VI(F(X)| > C)

fo,feF M

The result follows by the uniform integrability of {F(X;)}i>1, by letting n — oo and then
C —o0. O

3.3 The case of strong mixing sequences

Concerning the case of strong mixing sequences of real-valued random variables, some
new results have been established recently by Peligrad (2001-b). The proofs are mainly

based on the coupling result (c) of Theorem 2.7 and on a decomposition in ”p-sequences”
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as in the proof of Proposition 3.1. The results are again obtained without imposing
rates on the strong mixing coefficients and without requiring ergodicity. She has shown
that this class of strong mixing sequences satisfies an uniform weak law of averages if an
independent sequence having the same marginal does. Therefore the results available for
independent sequences imply similar results for strong mixing sequences.

Let us also notice that since, as we mentioned above, the proofs are mainly based on
the coupling result for strongly mixing sequences. Due to Remark 2.3, results for strong
mixing sequences taking their values in a Polish space cannot be derived by a similar
approach.

For a sake of simplicity, we set @, = a(F" !, X,,), where @ is defined in the previous

section.

Theorem 3.4. (Peligrad (2001-b) Assume {X,}n>1 is a sequence of identically dis-
tributed real-valued random variables in 1Ly such that @, — 0 as n — oo. Let {X}},>1 be
a sequence of independent identically distributed real-valued random wvariables such that
X{ has the same distribution as X,. Let F be a class of Lipschitz functions with the
Lipschitz constants bounded by C (C > 0) such that

n

(i) lim Esup — | (F(X7) — EF(X7)

n—oo feF n i
Then

=1
. . 1
(i1) lim Esup —
n—oo f€.7: n

=0.

Z (f(X3) —lEf(Xi))‘ =0.

In the statement of Theorem 3.4, let us notice that the assumption that the variables
have the same distribution can be relaxed by imposing some weaker forms of stationarity.

In this direction, we would like to mention the following result :

Proposition 3.2. If we assume in Theorem 3.4 that {X,}n>1 is uniformly integrable

instead of stationarity then Theorem 3.4 holds.
Proof of Proposition 3.2
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To prove the result, we consider the ”p-sequences” as in the proof of Proposition

3.1, for each 1 < j < p — 1, the vector (Y

0 Yk’:l’j) being this time constructed as

in Theorem 2.7. Assuming that Ef(X;) = 0 for all 4, we notice that by the triangle’s

inequality, we have

n k—1
1 1
Esup — f(X;)| < Esup — Y
fefn; (X:) fern]z%|zz: ( ’))|
1 p—1 |k-1
(3.10) +Esup — FY5)
rer kp <= 1=

First let us notice that it is easy to see that conclusion of Claim 1 (used for the proof of
Theorem 3.3) holds if we replace everywhere the convergence in probability by the L;-
convergence. Then under assumption (7), the last term in the right-hand side of inequality
(3.10) tends to zero by letting n to tend to infinity. Now, to treat the first term, we first
notice that since f is Lipschitz, by Theorem 2.7, we derive that

L pol ke p-1 k-1
Bswp - 301 (F02) - 107) | < 26X S [T Qo

fer T o j=0 i=0
< 20 SUP/ Qx| (u)du

1<i<n J(

To obtain the desired result we let first n tend to infinity and then we apply the following

lemma :

Lemma 3.1. Suppose that {X, },>1 is an uniformly integrable sequence of random vari-

ables, then

(3.11) lim sup /E Q| x;|(w)du = 0

e—0 i>1

Proof of Lemma 3.1 : Let suppose that ess supsup |X;| = 400, otherwise (3.11)
i>1
is trivial. Now notice that

sup / Qux, (w)du < sup E{ | X 11X > Qxy(€))}
0 i>1

i>1
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which converges to zero when ¢ — 0 by using the fact that lim._,o Q|x;|(¢) = +o0 together

with the uniform integrability condition. [

We can also formulate the following new result using strong mixing coeflicients.

Theorem 3.5. Assume {X,},>1 is a sequence of uniformly integrable, centered real-

valued random variables and such that o, — 0 as n — oo. Then

lim E ma;
n—oo 1<j<n n

Proof of Theorem 3.5
Let us first truncate the random variables in the following way : Take A be a positive

number and set

Xi=X;1(|X;| <A) -EX;I(]X;| < A)

and

X=X, 1(|X;] > A) —EX;1(|X;]| > A) .

Now we set S, = Zle X; and S, = Zle X! and we notice that
(3:12) S l) < 2B e )
Under the condition of uniform integrability of the sequence {Xi}, it is clear that the first
term in the right-hand side of the above inequality tends to zero by letting n to tend to
infinity and after A. Then it remains to treat the second term of inequality (3.12).

Now let p be a natural number p < n. Denote by k£ = [g}, and extend the vector

(X1,...,X}) to the sequence (0, X7, ..., X},0,0,...). Define Y}, = X}, for0 <7 < k-1,

0 <j<p-—1. Foreach 0 <j<p—1, consider the vector (Y'g,...,Y";_; ;) constructed

in Theorem 2.7, and notice that
m—1 {—1

1 1
—]E max [S7| = —E max max | X
1<j<n n  1<m<p 1<t<k P J
7=0 =0
1 m—1 £—1 1 m—1 £—1
(3.13) < -E max max | V'l .|+ —E max max | -Y"7 )
n  1<m<p 1<(<k . J n  1<m<p 1<6<k : bJ
j=0 =0 7j=0 <=0
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First we treat the last term in the right-hand side of the above inequality. By using

Theorem 2.7, we derive that

1 m— lf—l p—1 k—
1% ! 1%
nF g, e SIS W I
=TT T =0 i=0 3=0 =0
< 2 sup/ Qx1)(u)du
1<i<n J o
< 2Aa,

which converges to zero by letting respectively n and after p to tend to infinity. To treat

now the first term in the right-hand side of inequality (3.13), first we write

o~

m—1 £—1 p—1
1

1 *
—E max max | Y7 < =) E max | E Y’
& n 4 1<(<k &
j

n 1<m<p 1<t<k

Il
o
Il
<.
I

7=0 ¢z
By using Rosenthal’s inequality applied to the independent sequence (see e.g. Hall and
Heyde (1980)-Theorem 2.11), there exists a constant C' such that

-1
1/2
r* I "
g 3,0 (S0 B g,
1=

It follows that

which converges to zero by letting n to tend to infinity.

Gathering all these considerations, we obtain the desired result. [

4 Application to the Central Limit Theorem

In this section we shall see how the coupling results of Theorem 2.7 can be used to
solve the central limit theorem question for stationary strongly mixing sequences, say
X :={Xy, k € Z}. In this section, we mean by strongly mixing sequences, sequences such
that

an = (F, Fi®) = 0asn — oo
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where F? = o(X;,m < j < p).

Since 1956, a vaste body of work has been devoted to study the limiting behaviour
of strongly mixing sequences. This is a large class of random variables which contains
both weakly dependent sequences and sequences with long range dependence. Examples
include time series, Gaussian processes and Markov processes. These processes appear in
other branches of mathematics, as well as statistics and mathematical physics, giving rise
to a great deal of interest in their asymptotic properties.

The question concerning the central limit theorem in this setting is the following: under
what assumptions, besides that of strong mixing, do there exist real numbers a1, as, as, ...
and positive numbers by, by, b3, ... with b, — oc as n — oo, such that

S, — ay,
bn

(4.14) B N~N(0,1) ,asn— oo,

where S, =3 " | X,.
By answering a conjecture of Bradley (1997), Merlevede and Peligrad (2000) obtained

the following sharp central limit theorem that extends previous results by Ibragimov and

Linnik (1971) and Doukhan, Massart and Rio (1994).

Theorem 4.1. Suppose that {Xk, ke Z} 18 a strictly stationary, centered, strong mizing

sequence with finite second moment. Assume that

2
(4.15) lim infw >0.
n—o00 n
and
an 1

4.16 Q% (u)du = o(=) as n — oo.

0 | Xol n
Then
(4.17) LgNNN(O,l),asn—)oo.

V5 E|Sh|
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The result of the above theorem was predicted by Bradley (1997). In his paper he

formulated the following conjecture: Under the assumptions of Theorem 4.1, there exists
S,

a sequence b, — 00 as n — 00, such that b—n converges in distribution to a centered

n
Gaussian random variable with variance 1.

The proof of Theorem 4.1 in Merlevede and Peligrad (2000) is based on the Bernstein-
type blocking arguments and the coupling results. In an earlier version of this paper, the
coupling was used only for identifying the normalizing sequence b,. In a recent paper of
Merlevede (2001), the proof does not require coupling. we would like to mention here the
idea of proof based on coupling.

The proof Theorem 4.1 involves several steps.

Step 1 : As a consequence of (4.15) and (4.16), we proved that o2 := Var (S,) has the

representation :
(4.18) o, = nh(n),

where h(n) is a slowly varying function of n.

Step 2 : For preparing the decomposition in ”big” and ”small” blocks, we constructed
two sequences p, and ¢, which converge to infinity and such that ¢, = o(p,). In fact
the construction of p, and ¢, is the crucial part of the proof. The sequences are some-
how implicit solutions of an equation involving the mixing coefficients and a continuous
approximation of the quantile function.

Step 8 : The proof continues with the following truncation : Set T}, = Q) x,|(cyg,) and

X 1(X;| <£T,) —EX;I(]X;] <T,) if X is an unbounded sequence
X; if ess.supX = A a.s.

(4.19) and

X 1(|X,| >7T,) —EX;I(|X; >T,) if X is an unbounded sequence

X! =
0 if ess.supX = A a.s.

and let S;, =" X! and SJ =>"" , X/ Then S, =S, + S..
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Step 4 : At this step we reduce the proof to a central limit theorem for S, properly
- "

Vn

Step 5 : Here we partion the index set 1,2, 3, - - - into an alternating sequence of ”big”

normalized by showing that converges to zero in L.

blocks of size p, and ”small” blocks of size g, (in fact we will obtain &, ”big” blocks and

k, +1 ”small” blocks, where &, = [ n }).
Pn+ n

Let Y], Y], Y5, --- denote the respective sums of the X;’s in the "big” blocks each

having p, summands, and let Z{, Z}, Z}, - - - denote the respective sums of the X}’s in the
”small” blocks each having ¢, summands.

Moreover we use the following selection of b, :

b2 = knain ,
Zl?n-f-l Z/
and prove that the asymptotic behaviour of % is negligible for the conver-
n n>1

gence in distribution.

k
in Y1
Step 6 : At this step, we use coupling to study the asymptotic behaviour of {%} .
—_— n n>1

To this aim, we consider a sequence {Y]’*} of independent real random variables

1<i<kn

each respectively distributed as Y, and constructed as in Theorem 2.7. Since for all

1 < j <k, Y]] < 2pnQ)x,/(0q, ), point (c) of Theorem 2.7 yields

E| Zfil (YJI B YJI*) | < 8pnknaan|Xo|(aqn)

4.2
420 b = b |

which converges to 0 under (4.15) and our selection of p, and ¢,. This result implies that
k
by
the proof of Theorem 4.1 is reduced to study the limiting behaviour of {z:]_#} .
n>1

bn
an Y+
Step 7 : We show that % converges in distribution to a standard normal ran-
dom variable by checking the Lindeberg’s condition.

Step 8 : To end the proof we identify the normalizing sequence b,. To this aim we

Sn : : : : : :
prove that {—} is an uniformly integrable family. Notice that (4.20) entails that
n 7 n>1

{Z?ﬁl (Yf = ¥7")
bn

} is an uniformly integrable family. This consideration together
n>1
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with Steps 4, 5 and 7 imply the desired result. We finish the proof by using Theorem 5.4
in Billingsley (1968) which yields

lim

bn
|

For the sake of applications, we give the following corollary of Theorem 4.1 in term of
conditions imposed to mixing rates and to moments of individual summands. It extends

the corresponding results of Ibragimov (1962).

Corollary 4.1. Suppose that X := {Xk, ke Z} 1S a strictly stationary, centered, strong
mizing sequence which satisfies (4.15). In addition if
1) X has moments of order 2+ finite, for a 6 > 0 and

)

(4.21) nant® — 0 asn — oo

or if

2) X is bounded and
(4.22) no, — 0 as n — oo,

then (4.17) holds.

E(S?
Let us notice that under the additional assumption lim (—”) = 02 > 0, all the

n—00 n
results of type (4.17) hold with the normalization /n instead of \/ZE|S,|.
Moreover we can mentioned that the functional version of Theorem 4.1 has also been
established in the paper of Merlevede and Peligrad (2000), and it can be formulated as

follows :

Theorem 4.2. Assume that the conditions of Theorem 4.1 are satisfied. Then W, con-
[nt] x.

verges in distribution to W in the Skorohod space D([0,1]), where W, (t) = %, and
D) n

W is the standard Brownian motion on [0, 1].
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