ESCAPE FUNCTIONS CONDITIONS
FOR THE OBSERVATION, CONTROL AND STABILIZATION
OF THE WAVE EQUATION
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Abstract. For the time-independent wave equation on a connected compact Riemannian man-
ifold (2, g) with C3 boundary, the geodesics condition of C. BArDOS, G. LeEBEAU, AND J. RAUCH
(cf. Sharp sufficient conditions for the observation, control, and stabilization of waves from the
boundary, SIAM J. Control Optim., 30 (1992), pp. 1024-1065) is characterized in terms of escape
functions, which are some Lyapunov functions on the phase space S*§) (the unit sphere cotangent
bundle). The first order multipliers are shown to correspond to linear escape functions. This yields
a straightforward geometric proof that the geodesics condition holds in the situations where the
classical multiplier method applies. When the geodesics condition holds, necessary conditions for
the existence of a linear escape function are given. They yield a class of simple situations (e.g. in
R2 with constant coefficients), where the optimal control time or control regions are out of reach of
first order multipliers techniques.
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1. Introduction. This paper is concerned with the so widely cited and scarcely
used sharp sufficient bicharacteristics condition for the observation, control and stabi-
lization of the wave equation from the interior or the boundary introduced by C. Bar-
dos, G. Lebeau, and J. Rauch (cf. [1] and the appendix of [16]). Since we shall restrict
to the time-independent case, this conditions can be stated in terms of generalized
geodesics (i.e. the rays of geometrical optics) and we shall refer to it as the geodesics
condition.

1.1. P.D.E. problems. Let us recall two simple examples of the partial differ-
ential equations problems under consideration.

Our first example is a problem of exact controllability from the boundary. Let 2
be a bounded open connected subset of R, with C! boundary 92, inside which waves
propagate according to the wave equation Cu = 0, where (] = 9? — A is the speed
one d’Alembertian. Let T > 0 and 6 € C9(]0,T[x0) define the boundary region
Y = {(t,r) € Rx09Q| 0(t, x) # 0} where the Dirichlet boundary condition is controlled.
The function @ is said to control  ezactly if for all (ug,u1) € L?(Q)x H () thereis a
control function v € L?(R x 92) such that the solution of the mixed Dirichlet-Cauchy
problem:

(1.1) Ou=0 in]0,7[xQ, u=6xv on]l0,T[xI9Q,

with Cauchy data (u, Oyu) = (ug, u1) at t = 0, satisfies u = du=0at t = T.

Our second example is a problem of uniform internal stabilization. Let (M, g) be
a smooth connected compact Riemannian manifold with boundary 0M and let U,
denote the associated d’Alembertian (cf. §2 for geometric definitions). Let © be the
complementary set of the support of a nonnegative a € C°° (M) which defines the
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damping region {x € M| a(x) > 0} = M \ Q. The function a is said to stabilize M
uniformly if for all (ug,u;) € H(M) x L?(M) the energy of the solution to the the
mixed Dirichlet-Cauchy problem :

(1.2) Ogu+2a0u=0 inRyxM, uwu=0 onRixdM,

with Cauchy data (u, dyu) = (ug,u1) at t = 0, decays exponentially, i.e. there exists
B >0and 3 > 1 such that for allt > 0 :

(1.3) E(t) = %/M {1ovu(t, z))? + |Vu(t,z)|2} dyr < B¢’ E(0).

1.2. Geodesics condition. The common geometric features of these examples
are a compact Riemannian manifold (2, g) and an open subset I' of its boundary, if
we restrict the first example to a time-independent control region ¥ =]0, T[xI" where
I' is an open subset of I and if, in the second example, we denote the part of the
boundary of the damping region inside M by I' = 9Q N M (cf. fig. 1.1).

In this context, the generalized geodesics (cf. fig. 1.2 and def. 2.1) are continuous
trajectories t — x(t) € Q which follow geodesic curves at unit speed in  (so that
on these intervals ¢t — #(t) is continuous); if they hit 9Q \ T’ transversally at time
to, then they reflect as light rays or billiard balls (and ¢ — &(t) is discontinuous at
to); if they hit T' transversally at time ¢, then for times t > ¢y they have “escaped”
from € if they hit 0€) tangentially at time tg then either there exists a geodesic in (2
which continues ¢t — (x(t),#(t)) continuously and they branch onto it, or there is no
such geodesic curve in 2 and — depending on where 9Q was hit — if z(tg) € ' then
they have “escaped” from () at times t > tq, if 2(tg) € Q\ T then they glide at unit
speed along the geodesic of 9 which continues ¢ +— ((t),%(t)) continuously until
they may branch onto a geodesic in €2, otherwise they reach 9I" at a time ¢; and have
“escaped” from () at times t > t;. Following [3], to ensure the unique continuation of
these trajectories, we assume that :

(1.4) 99 is at least O3 and, for any k € N, k > 3, there are no contacts of order
k — 1 between 02 and its tangents in open subsets of 9 in which it is only C.

(n.b. the hypothesis of theorem 3.8 in [1] corresponds to & = oo, and unicity also
holds for real analytic g and 9Q).

Fic. 1.1. Q is light, M is QUdark, T is Fic. 1.2. Two generalized geodesics.
the frontier light/dark. The geodesics condition T' is doted. N:nondiffractive, D :diffractive,
holds. G :gliding.
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The bicharacteristics condition of C. Bardos, G. Lebeau, and J. Rauch roughly
says that every generalized bicharacteritics escapes R x € through . In our context
of time-independent coefficients and region ¥ =|0,T[xI", we rephrase the bicharac-
teristics condition by saying that the time T and the boundary region I' satisfy the
geodesics condition if every generalized geodesic starting in Q has escaped 2 through
I at time t = T, in short : every generalized geodesic of length T escapes Q through
I (e.g. in fig. 1.1, this condition is “easily seen” to hold for some T').

When 012 is smooth and 6 is the characteristic function 1y of X, it is proved in
[1] using microlocal techniques (i.e. the results of [18] and [19] on the propagation of
singularities at the boundary and a lifting lemma at nondiffractive points) that the
bicharacterics condition is sufficient and almost necessary for the exact controllability
of problem (1.1). Using microlocal measures techniques of P. Gérard, L. Tartar, P.-
L. Lions and T. Paul (cf. [4] for a survey), N. Burq obtained the same result in [3]
when ¥ =)0, T[xT but 99 is only C*¥ with k € N, k > 3 (cf. [9] for propagation results
when  is convex with C'! boundary and [5] for results about corners). Moreover,
for any 6 € C2(]0, T[x0R) it is proved with the same techniques in [6] that the
bicharacteristics condition is both necessary and sufficient for 6 to control 2 exactly
in problem (1.1) (n.b. if 15 controls Q2 exactly then 8 does, and if 8 does then so does
1s for any open X’ containing ).

Another result of C. Bardos, G. Lebeau, and J. Rauch is that if there exists a
time 7" > 0 such that the geodesics condition holds then a stabilizes M uniformly
in problem (1.2) (n.b. the stabilization of a compact manifold M without boundary
corresponds to I' = 9€2). No regularity of 9 at points of T is required here because
there is no boundary condition on I'. This is the context in which microlocal measures
techniques where first applied to control theory, namely by G. Lebeau in [15] to bound
from above the best rate  of exponential decay in (1.3) by some means of a over
generalized geodesics.

We refer to [13], [1], [14], [2] for more results allowing observation and stabilization
from the boundary, time-dependent coefficients, lower-order terms, Neumann and
mixed type boundary conditions, Schrodinger and plate equations, and more. We refer
to [21], [20] for results on general boundary conditions and transmission problems, to
[7] for general results on systems.

1.3. Motivation. While superseding in sharpness and scope earlier results ob-
tained by the “multiplier method” (cf. §4), the results of [1] are often discarded for
reasons already put forward in the introduction of [1]. In the first place, a lot of
smoothness is required in [1], but we have recalled above the improvements brought
by microlocal measures techniques in this respect. The second reason — more serious
but less often noticed — is that the explicit computation of the constants appearing
in the observation inequalities (which allow to predict how much energy is needed to
control waves of given energy) are out of reach of the closed graph argument in [1]
(or the argument by contradiction in the microlocal measures technique).

The third point — to which this article contributes — is that the conditions ob-
tained may not be easy to verify for complicated operators and geometry as acknowl-
edged in [1]. We may add that, even in applications in Euclidean geometry (where
geodesics are straight lines) of dimension two or three, we are often in the awkward
situation where it is intuitively clear whether the geodesics condition is satisfied but
quite intricate to prove rigorously.

Therefore we felt the need to dwell on pages 1030 and 1031 of [1] which “illustrate
the controllability criterion” and end with the following remark:
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“Our contention is not that we could not do any of these three [results]

with sufficiently clever differential multiplier. Quite the contrary,

the methods of Morawetz, Ralston and Strauss would surely suffice.

However to create a general result, we would be led inevitably to

the same geometric considerations, and avoiding pseudodifferential

techniques would only make the task more complicated.”
This quote refers to [24] where the decay of solutions of the wave equation outside
obstacles is deduced from some “escape function” which is proved to exist in dimension
three under the geodesics condition that the obstacle is “nontrapping” (R. Melrose
later improved on this paper using the microlocal results of [18] and [19]). Increasingly
clever first order differential multiplier had been applied earlier to this problem (radial
in [22], gradient of a convex function in [23], “expansive” vector field in [26]) which all
correspond to linear escape functions. As C. S. Morawetz, J. V. Ralston, and W. A.
Strauss write in [24] :

“The major point of the present work is that a linear escape function

is too special.”
In the context of resonances for Schrédinger operators with a potential, the same point
was made by B. Helffer and J. Sjostrand in [10] where they introduced nonlinear escape
functions generalizing the radial case treated earlier by J. Aguilar and J. M. Combes.

This article makes the same point in the context of the observation, control and

stabilization of waves from the interior or the boundary (cf. §5). We intend it as
a track to find sufficient conditions that would be sharper than those obtained by
the classical multiplier method and easier to verify — albeit less sharp — than the
geodesics condition of [1] (cf. §6).

2. Generalized geodesics. Let (£2,g9) be a connected compact oriented n-
dimensional Riemannian manifold with metric g of class C? and boundary 02 sat-
isfying (1.4). Let v denote the exterior normal vector field and D the Levi-Civita
connection of g.

Let J : X + & denote the “flat” isomorphism between the tangent bundle 7°Q
and cotangent bundle 7% defined by £(Y) = g(X,Y), and let a denote the metric

on T*Q defined by a(§,n) = ¢g(X,Y) where £ = J(X) and n = J(Y). In local
coordinates (x!,22,...,2"), we write a vector field : X = ZiXi%, a 1-form :
E=>, &da', and for each o € Q we write the scalar product on the tangent space :
<X, Y>I = Zi,j gi’j(lL‘)Xin, so that J(X)] = Zz‘giiji and Jfl(g)j = Zi ai’j&,
where the matrix A = (a*7) is defined by A~ = (g; ;). We keep the same notation
for the scalar product on the cotangent space (£,7), = {€An and denote the associated
norms by | - |-

Let V = J'd denote the gradient operator and A, denote the Laplace-Beltrami
operator in (€2, g). The Sobolev spaces and the energy (1.3) are defined with respect
to the measure dz,. In local coordinates (x',2%,...,2") : dz, = \/det gdz’ - - - dz".
and Ayf = (y/detg)™! > i Oa; (a’\/det g0y, f). Let p € C*(T*(R x €2)) denote
the principal symbol of the d’Alembertian O, = 07 — A,. In local coordinates,
pltz,7,8) =3, a®I(z)&;&;—7? so that p is also the principal symbol of the operator
P defined in [1] by P =07 — 37, ;" (2)0y; 0z, + lower order terms.

To link the bicharacteristics of p with the geodesics, it is convenient to consider
the Hamiltonian function h = p/2 instead of p. Let Hj denote its Hamiltonian
vector field, in local coordinates : Hj, = 0r¢hO s — Op,zhOr¢. The bicharacteristics
are integral curves s — (t(s),z(s), 7(s),&(s)) = exp(sHp)(t(0), 2(0),7(0),£(0)) of Hy,
along which h = 0. Since p is time-independent, 7 is constant along bicharacteristics.
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By a linear change of parameter, we may restrict to the bicharacteristics defined on
S = {(t,x,7,&) € h71(0)] — 7 = [¢], = 1}. They satisfy : i{(s) = —7(s) = 1 and
li:(8)]z = |J1(E(8))]z = |€(8)]x = 1. Therefore, pushing them through the projections
7 T*(Rx Q) — Qand II : T*(R x Q) — T*Q (well defined since t is a global
coordinate on R x €)), we recover the geodesics curves parametrized at unit speed
t — x(t) = mexp(tHp)(0, 2(0),0,£(0)) starting from 2(0) in the direction £(0), which
we will sometimes consider as strips t — (x(¢), J(2(¢))) = Mexp(tHp)(0,2(0), 0, £(0))
on the cosphere bundle S*Q2 = {(x,¢) € T*Q| [£], = 1}.

As proved by N. Burq in [3], (1.4) ensures that the generalized bicharacteristics
introduced in [18] are uniquely defined through each point of h~1(0). Let B de-
note the second fundamental form, i.e. the symmetric bilinear form B,(X,Y) =
—(Dxv,Y),. Let 90 = ¢~1(0) be locally defined by a submersion ¢ such that
Q= {¢(z) > 0}. Then V¢ = —|Vo|v, Hess¢(X,Y) := Ddp(X,Y) = —|V¢|B,(X,Y)
and HP¢(z, J(X)) = —|V¢|.B:(X, X). Therefore the strictly gliding points of the
boundary are the points of T*0€) at which the second fundamental quadratic form
is positive. The Hamiltonian field of h restricted to the symplectic space where
¢ = Hp¢ = 0 is the gliding vector field HY = Hj + (Hﬁ¢/H§h)H¢. The glid-
ing bicharacteristics are the trajectories of H f and their image through II are the
geodesic curves of the restriction of g to 92 parametrized at unit speed. Recall that a
generalized bicharacteristic pieces together trajectories of Hy, in 2 and gliding bichar-
acteristics in the set G, of strictly gliding points : in particular, if at time ¢ it is at
p € T*0L, then in a one sided deleted neighborhood of ¢ it coincides with either a
bicharacteristic in © or a gliding bicharacteristic in G,. Recall that the hyperbolic
points of the boundary are the transversal ones (i.e. not in 7%0f2). Recall that
p = (z,6) € T*Q such that = € 9N is nondiffractive (cf. [1]) if the (nongeneralized)
bicharacteristic through p at time ¢ is out of ) at least in one of the one sided deleted
neighborhoods of t, i.e. either p ¢ T*9) is hyperbolic or p € T*9Q and the general-
ized bicharacteristic through p at time ¢ is a gliding bicharacteristic in G, at least in
one of the one sided deleted neighborhoods of .

DEFINITION 2.1. The generalized geodesic strips are the images of the generalized
bicharacteristics of h = (|¢]s — 72)/2 over S = {—7 = ||, = 1} through the bijection
II : S — S*Q. The generalized geodesic curves are the projections of the generalized
geodesic strips on Q.

The generalized geodesic curves are described in §1.2 for readers not familiar
with generalized bicharacteristics. In §3, it will be convenient to think of generalized
geodesics hitting I' at a nondiffractive point at time ¢ = ¢y as having escaped  at
times t > to. This interpretation is natural when 2 is an open subset of a larger
manifold (M, g) : 9Q\T is a border “obstacle” which confines geodesics inside (2 and
T is a border “hole” through which the geodesics may “escape” out of Q.

DEFINITION 2.2. The geodesics condition G(T,T") for the time T > 0 and the
open region I' C 0X) holds if every generalized geodesic of length greater than T passes
through T' at a nondiffractive point (i.e. every generalized geodesic of length greater
than T escapes Q through T).

As recalled in §1, G(T,T') implies, for instance, that all T” > T has the following
control property : for all (ug,u;) € L2(Q) x H=(Q) there exists a control function
v € L2(]0, T'[xI") such that the solution of the mixed Dirichlet-Cauchy problem:

(2.1) Ogu=0in]0,7"[x2, uw=wvon]0,7[X, u=0o0n]0,T[x0Q\T,

with Cauchy data (u,0pu) = (ug,u1) at t = 0, satisfies u = du = 0 at t = T".
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Moreover, if T” satisfies this property, then G(7,T') holds. When k < oo, these
results are implicit in [3].

Remark : If we also assume 2 to be convex then the second fundamental form
B is nonnegative on T*952, so that all generalized geodesics starting from 190 keep
gliding on 9 forever. This answers the question raised in remark 4.7 of [17] : there
is never internal exact controllability for the wave equation in a convex open (2 C R”
satisfying 1.4 with Dirichlet condition on 92 from a control region G such that G C (.

3. Escape functions. In [24], a notion of “escape function” was introduced
which characterizes (in dimension three) the “nontrapping” geodesics condition of
P. D. Lax and R. S. Phillips for exterior problems (roughly: T' = §) and there is no
specific time, as for stabilization). We adapt the notion of escape function to the
geodesics condition of C. Bardos, G. Lebeau, and J. Rauch by taking T" into account.

DEFINITION 3.1. An escape function adapted to T > 0 and T' C 0X) is a real
function f defined on S*Q such that :

(ii) f increases at least as fast as the distance along the closure of any finite
interval of geodesic strip in €.

(iii) For all (x,&) € S*Q such that x € OQ\T and £(v) > 0 : f(x, &) = f(x,€)
for € = £ —26(0)J 1 (v).

(iv) f increases at least as fast as the distance along the closure of any finite
interval of geodesic strip in OQ\ T' on which the second fundamental quadratic form
1S positive.

The escape functions condition E(T,T") holds if there is an escape function adapted
toT andT.

Note that (i) says that f takes its values in an interval of length less or equal
to T and that (iii) says that f is nondecreasing at reflexions on 9\ I'. . When
f € CY(S*Q) then (ii) says that for all (z,£) € S*Q : Hpf(z,£) > 1, and (iv) says
that for all (x,¢) € S*Q such that x € 9Q\ T, £(v) = 0 and B (J~1(¢), J71(¢)) > 0 :
HE f(x,&) > 1. Moreover (ii) and (iii) imply (iv) by taking a limit as £(v) tends to 0.

THEOREM 3.2. E(T,T) is equivalent to G(T,T'). Moreover f can be chosen
continuous outside T and at hyperbolic and strictly gliding points of T.

Proof. We first prove : E(T,T') = G(T,T'). Assume E(T,T) holds. Let z :
[0,T"] — € be a generalized geodesic of length 7" > T which does not pass through
I" at a nondiffractive point. From (ii), (iii) and (iv) we deduce that t — f(z(t), J(&(t)))
increases at least as fast as ¢. Hence :f(z(T"), J(#(T"))) — f(«(0), J(£(0))) = T' > T,
which contradicts (i). This proves that such an x does not exist, and therefore G(T,T")
also holds.

We now prove : G(T,T") = E(T,T). Assume G(T,T') holds. Let 7" > 0 and con-
sider a generalized geodesic curve  which does not pass through I' at a nondiffractive
point for ¢ €] 0, T’ [, such that =(t) € T for t € {0, 7'} and there exists € > 0 satisfying
the following properties. If z(0) € T', then we assume z(t) € T for ¢t €] —¢€,0] (in
particular z(0) is nondiffractive) and x(t) € Q for ¢t €]0,e[. If z(0) € II', then we
assume z(t) € T for t €] —¢,0[ and z(¢) ¢ T for ¢t €]0,e[. If (T’) € T, then we
assume z(t) € I' for t €] T, T’ + ¢ (in particular z(7”) is nondiffractive) and z(t) € Q
for t €]T" — e, T'[. If (T") € OT, then we assume z(t) € I" for t €]T',T" + €[ and
x(t) T fort €]T" — €, T"|.

For each such z, we set f(z(t), J(2(t))) =t for t € [0,T"], where the equality
is understood as valid for derivatives from both sides at points of reflexion except
when t € {0,T7"}. G(T,T') ensures that 7" < T and therefore this f satisfies (i). By



ESCAPE FUNCTIONS 7

definition, this f also satisfies (ii), (iii) and (iv) (with equalities instead of inequalities).
The only points of §*Q2 where f has not been yet defined are the points p € S*T" such
that the generalized bicharacteristic through p at time ¢ is a gliding bicharacteristic
in G4 in both one sided deleted neighborhoods of t. We set f = 0 at those points and
recall that strictly gliding points of I have this property.

The continuity of compressed generalized bicharacteristics ensures that f is con-
tinuous outside I' and at hyperbolic points of I'. For any point p € GgNS*T'and 6 >0
small enough, there is a neighborhood of p in I' included in the union of G, N S*I"
and hyperbolic points of I' which are endpoints of a generalized geodesic x of the
preceding type with TV < §. Therefore f is also continuous at strictly gliding points.
d

4. Linear escape functions and the classical multiplier method. We dis-
cuss the geometrical relationship between the geodesics condition and the situations
where first order multiplier techniques apply (cf. the books [16] and [11]).

DEFINITION 4.1. Consider a time T > 0 and an open region I' C ).

The escape vector field condition EV (T,T") holds if there is a C' section L of TS
such that :
(i) For all x € Q: |L(x)|, < T/2.
(ii) For all (v, X) € SQ, (DxL,X), > 1.
(iii) {z € 99| (L(z),v), >0} CT.
The escape potential condition EP(T,T) holds if there is a function ¢ € C%(Q) such
that :
(i) For all x € Q: |dp|. < T/2.
(ii) For all (x, X) € S, Hessp(X, X) := Ddp(X, X) > 1.
(iii) {z € 99| %f(m) =dzp(v) >0} CT.
When 2 is a submanifold of R™ with the Euclidean metric, the radial condition R(T,T")
holds if there is a point xo € R™ such that :
(i) R(wg) :=sup{|lz — zo||2z € Q} < T/2.
(ii) {z € 9Q||(x — xo,v) >0} CT.

By taking ¢(z) = |z—0|?/2, L(x) = V¢ and f(x,¢&) = ¢(L(z)), a straightforward
computation yields (using, in the last step, that geodesic curves ¢ +— x(t) are defined
by D;4 =0 and that D is defined by Dx (L, X), = (DxL,X), + (L,Dx X))

ProposITION 4.2. R(T,T') = EP(T,T') = EV(T.T') = E(T,T).

The radial multiplier was introduced by C. S. Morawetz in [22] for exterior prob-
lems and condition R(T,T) is a variation on her “star-shape” condition. Using this
radial multiplier, sufficient conditions for exact controllability from the boundary were
obtained by G. Chen (1979) and L. P. Ho (1986) and condition R(T,T") is their sharper
form due to J. L. Lions (cf. [16] and [11]). The condition EP(T,T") is adapted from
the convex function condition of C. S. Morawetz in [23] for exterior problems. Mul-
tiples of the square of the distance to a point (more generally to a convex set) are
natural candidates for potential escape functions, at least when € is included in the
“injectivity domain” of the corresponding exponential function and the Hessian does
not degenerate on € (c.f. [27] for interesting remarks along this line). The condition
EV(T,T) is adapted from the condition of W. A. Strauss in [26] for exterior problems.
The condition of W. A. Strauss was used in [8] for boundary stabilization with Eu-
clidean metric, and later in [12] with less restrictive assumptions and hints for general
metrics.

Remark 1 : The Riemann multiplier method developed by P. F. Yao in [27] is
based on the condition EV (T,T"). As a byproduct we obtain the results stated in [27]
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under less restrictive assumptions (lower order terms and less regular 992 and g are
allowed). Although not stated in [27], Yao’s proof (e.g of theorem 1.1) yields more
in one respect (cf. the second reason in §1.3) since it allows to bound from above
the constant appearing in the observation inequality in terms of a finite number of
spectral data : one can conclude by an explicit computation from the high-frequencies
inequality in lemma 2.3 of [27] (where this constant for waves which are orthogonal
to the first m eigenmodes is an explicit function of the m-th eigenvalue), instead of
using theorem 5.2 of [11] which loses track of the constants.

Remark 2 : If Ly is a vector field satisfying (Dx Lo, X), = 0 for all (z, X) € SQ,
then adding Lo to an escape vector field L; modifies the boundary condition (iii)
without modifying the interior condition (ii). Hence the escape vector field L = L1+Loy
yields control regions which could not be obtained with L. The multipliers introduced
by A. Osses (e.g. L(z) = M(0)(x—xo) where M (6) is the rotation of angle #) build on
this remark: in [25], 2 is a submanifold of R™ with the euclidean metric, L1 (x) = z—xq
is the radial vector field and Ly(x) = A(z — x0) is a “rotated” vector field, i.e. A is a
skew-symmetric matrix.

Remark 3 : In [17], K. Liu introduces “piecewise” multipliers for internal exact
controllability in a bounded connected open M € R™ with Dirichlet condition on M
from a control region G C M under the following geometric condition : there exists
open sets ; C M and points z; € R™ (for j = 1,...,J) such that Q; N Q; = 0 for
i#jand G O M NN [(U;T'y) U (M \ U;Q;)] for some e > 0 where N[S] denotes an
e neighborhood of the set S and I'; = {z € 0Q; | (x — z;,v;) > 0} where v; is the unit
exterior normal to J€2;. Remark 4.7 of [17] calls for a geometric argument proving that
this condition implies the geodesics condition when OM is sufficiently smooth. Let Q
denote a connected component of M \ G and ' = 92N G C OGN M. Tt is included
in one of the Q; only and we fix this j henceforth. (T}, 09Q; N G) satisfies the radial
condition in €; with T; = 2R(z;) since I'; C G, hence it also satisfies the geodesics
condition. Every generalized geodesic of length Tj starting in 2 and reflecting on
o0\ G C 995 \ (992, N G) C OM reaches 9S2; N G and a fortiori escapes 2 through
I". Therefore every generalized geodesics in M of length T' = sup; T)j reaches G, which
proves that the condition of Liu implies the geodesics condition (no regularity of 0€2;
outside 9M is needed since it carries no boundary condition).

5. Necessity of nonlinear escape functions. We illustrate the necessity of
nonlinear escape functions by conditions which keep the optimal control time (cf.
prop. 5.1 and fig. 5.1) or the optimal control region (cf. prop. 5.2 and fig. 5.2) out of
reach of any linear escape function. This contrasts with the context of exterior prob-
lems where the geodesics condition implies the existence of a linear escape function
in dimension n = 2 (cf. §4 of [24]).

Let diam,(€2) denote the (finite) supremum of the lengths of the geodesics in .

A diameter of (2 is a geodesic in ) whose closure is of length diam,(€2) (there is at
least one since 2 is compact).

PROPOSITION 5.1. If there exists iy € Q0 and two distinct geodesics in Q of length
T > 0 issued from x, then EV(T,0) does not hold. In particular, if T = diamg,(Q)
and there are two diameters of Q) issued from the same point x € Q, then E(T,00)
holds but EV (T, 08) does not.

Proof. Assume L satisfies EV (T, 02). Denote by [0,7] 5 t — z(t) the geodesic
from z(0) = z to z(T") = y. By (ii) : (L(y), (1)), — (L(2),%(0)). > T, and by (i)
we know that (L(y), #(T))y < |L(y)ly < T/2 and —(L(z),#(0)). < |L(2)|. < T/2,
so that (L(y),z(T))y = |L(y)ly = T/2 = |L(2)|. = —(L(2),&(T)). and therefore
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L(y) = &(T). The same argument with the other geodesic proves both geodesics have
the direction L(y) at y which contradicts that they are distinct. O

PROPOSITION 5.2. If there are J geodesics in ) which are issued from points
z; € OQ\T (j = 1,...,J) with directions normal to the boundary and cross at
y € Q with directions &; such that the complementary set in T, of their polar cone
C={Y eT,2|Vj,&(Y) <0} is empty, then EV(T,T") does not hold for any T > 0.

Proof. Assume L satisfies EV(T,T"). Denote by [0,T] 3 t — z(t) the geodesic
from 2(0) = z; to #(T') = y. Since ©(0) = —v(x;), (iii) implies (L(x;),%(0)),; = 0.
But by (ii), we know that (L(y), (7)), > (L(x;),2(0));, so that (L(y),&;), > 0
since &(1') = ;. Repeating the argument with all j proves L(y) ¢ C, which is a
contradiction. O

In particular, this proves that exact controllability cannot be proved “with a
sufficiently clever multiplier” of order one in the situation described in fig. 4 p. 1031
of [1]: a disk with some disconnected “minimal” boundary control region which we

reproduce in fig. 5.2.
X <

N

X3
\\”""»/‘/,
FiG. 5.1. Segments are diameters of length Fic. 5.2. Segments explain why G(T,T)
T. By prop. 5.1: G(T,09) holds but EV (T, 0Q2) holds for some T. EV(T,T') does not by
does not. prop. 5.2 with J = 3.

6. Open problem. As a conclusion to this article we formulate a problem which
is as relevant to the applications as finding more clever first order multipliers : find
explicit classes of nonlinear escape functions (e.g. polynomial in ¢ of fixed odd order)
which apply to simple situations where linear escape functions do not, and which yield
sufficient conditions easier to verify than the sharper geodesics condition of [1].

Acknowledgments. T am thankful to N. Burq, G. Lebeau and C. Margerin
for stimulating discussions. N. Burq triggered this investigation by mentioning the
function f(z,£) = £.(x—x0) as I was asking him whether he knew of a straightforward
proof that the radial multiplier condition as found in [16] implies the bicharacteristics
condition of [1].
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