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Abstract

We shall present here results concerning the metric entropy of spaces of lin-
ear and non linear approximation under very general conditions. Our first result
precises the metric entropy of the linear and non linear approximation spaces ac-
cording to an unconditional basis verifying the Temlyakov property. This theorem
shows that the second index r is not visible throughout the behavior of the metric
entropy. However, metric entropy does discriminate between linear and non linear
approximation.

Our second result extends and precises a result obtained in an hilbertian framework
by Donoho. Since these theorems are given under the general context of Temlyakov
property, they have a large spectrum of applications. For instance, it is proved in
the last section, they can be applied, in the case of , norms for dforl < p < oo.
We show that the lower bounds needed for this paper are in fact following from
quite simple large deviation inequalities concerning hypergeometric or binomial dis-
tributions.

To prove the upper bounds, we provide a very simple universal coding based on a
thresholding-quantizing procedure.
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1 Introduction

We are mainly interested in this paper, in the interplay between linear approximation,
non linear approximation and metric entropy. Non linear approximation has been widely
studied, at least these last 15 years (see for instance [4], [5], [9], [10], [11], [12]...). Espe-
cially the constructive methods, and particularly those using bases have been developped
in the direction of important applications : image processing, statistical estimation, com-
pression. (see for instance Donoho [15], Kerkyacharian Picard [25].)

On the other side, metric entropy has been introduced in the fifties by Kolmogorov
(see [27] and also [31], [32]). In 1967 Birman and Solomyak [3] have computed the
behavior of the metric entropy for balls of Besov spaces. More recently, in the framework
of y—approximation, D. Donoho in [15] has proved that there is an important link
between the two topics. His proof uses the characterization of non linear approximation
spaces as sequence spaces, and an interpretation of metric entropy via coding theory. The
point of wiew of coding theory has also been recently studied by Birgé and Massart [2],
and Cohen and al, [6].

We shall present here two principal results concerning the metric entropy of spaces
of linear and non linear approximation under very general conditions. In section 2, we
recall the main definitions of the objects that we are going to consider. More precisely,
Schauder and unconditional bases, as well as the very useful Temlyakov property will be
recalled. We also give the definitions of spaces of linear and non linear approximation
according to a particular basis.

In section 3, we state our two principal results which are the following : The first
theorem precises the metric entropy of the linear and non linear approximation spaces
according to an unconditional basis verifying the Temlyakov property. This theorem
shows that the second index r is not visible throughout the behavior of the metric entropy.
However, metric entropy does discriminate between linear and non linear approximation.

The second theorem extends and precises the result obtained in an hilbertian frame-
work by Donoho [15] : Under some geometrical condition for K, and some a priori
compactness property subspaces of the non linear approximation space A?_(€) are char-
acterized by metric entropy behaviour.

Since these theorems are given under the general context of Temlyakov property, they
have a large spectrum of applications. For instance, as it is proved in the last section,
they can be applied, in the case of , norms for ? for 1 < p < oo, when the basis is a
compactly supported wavelet tensor-product basis. With some additional computations
which can be found in [26], these results enable us to find back very simply the results
of Birman and Solomiak, concerning the metric entropy of Besov spaces.

Section 4 and 5 are devoted to the proofs of the previous theorems. However, each of
them has its own interest.

Section 4 concerns lower bounds. All the lower bounds needed for this paper are in
fact following from an evaluation of large deviation type inequalities concerning hyper-



geometric or binomial distributions. It is then applied to special sets whose entropy is
bounded below (see Proposition 4).

Section 5 is devoted to upper bounds. To prove the upper bounds, we provide a very
simple universal coding ( it is essentially a thresholding-quantizing procedure ).

As was said before, the last section in concerning the application to wavelet in the
context of , spaces. We will first make a review of some embedded properties for a
sequence (e;);e of real valued functions defined on a measured space (X, ). The last
one will be the p-Temlyakov property. The first one is the superconcentration property.
We will prove that this property can be proved for wavelet bases. We will essentially
need 2 steps: The first one studies the case of the Haar wavelet, where the properties
is almost obvious; the second one uses the maximal functional to transfer results about
Haar wavelets to general compactly supported wavelets.

2 Properties of Bases and Approximation.

Let us first recall some well known facts about bases in Banach spaces and approximation.

We refer to [38] and [29].

2.1 Banach spaces and Schauder Bases.

All along the paper X will denote a Banach space, or a quasi-Banach space equipped
with the norm || ||x. Let us recall (see [11]) that we can renormalized a quasi-Banach
space in such way that it becomes a 7—Banach with 0 < 7 < 1, i.e.

VieXge X, |f+dllx <Iflx + llgllx

To make things simpler, we will give the proofs for the Banach case. However, the case
of a quasi-Banach case is straightforward. It is let to the reader. Typical examples of
Banach spaces will be X = ,( 9) 1 < p < co and X = H, the Hardy space, and of
quasi-Banach spaces the Hardy spaces X = H,, 0 < p < 1.

We recall that a topological basis (or Schauder basis) is a sequence € = {e,, n € } C

X, such that :
Vz € X, there exists a unique sequence ), such that x = Z A€y
The sequence Y A e, is convergent in the X-norm.

This notion has been introduced by Schauder in 1927 see [37]. As an example, the
Fourier basis is a topological basis of ,( ) for 1 <p < oo, if is the torus.

2.1.1 Spaces of linear approximation according to a basis £.

Let £ = {e,, n € } be a Schauder basis of X. For f = )" 60;e; in X, let us introduce

pn(f7g7X) = H ZeieiHX-



Of course, using the definition of a Schauder Basis, we get lim, o, pu(f, €, X) = 0. It is
natural to precise the rate of convergence and define for all 0 < s < 0o, and 0 < r < oo,
the spaces :

BIEX)={f= ZeeZeX {ann V(XM =

S(£,X) <OO}

and for r = oo,

BL(EX)={f=) bie;e X, sup n'pi(f.€,X) = ||fllpse.x) < oo}

1<n<o

It can be shown that these spaces are (quasi-)Banach spaces, continuously embedded in

X.

2.1.2 Spaces of non linear approximation.

Let £ ={e,, n € } be a Schauder basis of X. For any integer n € and any function
[ =227 0:¢; € X we define the best rate of approximation of f by a linear combination
of length n in &, by:

o, &, X) =inf{||f —h|lx, h=> \e;, card(A)=n, A€ } (1)
€A
Obviously, o, < p, since A, = {1,... ,n} and X; = 0; is a possible choice. Moreover, the

introduction of all the other possible choices clearly leads to a non linear problem. This
notion seems to go back at least to Birman and Solomiak [3], and has been impressively
revisited in the last decade.

One also defines, for all 0 < s < o0, and 0 < r < oo, the space :

5(€,X) <OO}

ANEX)={f=) bie: € X, {Znan (&, X T =

and for r = oo,

A (E,X)={f= Zeie"' € X, sup n'o,i(f,€,X) = |[fllagex) < oo}
1<n<o
It can be shown (see [9], [11], [12]) that these spaces are (quasi-) Banach spaces,
continuously embedded in X. Obviously B?(€, X) is continously embedded in A3(E, X).
Let us observe that o,(f,€, X) is a non increasing function of n. Hence, we have an
equivalent description of A(E, X), by taking :

$(£,X) < oo}

(2)

AEX) = {/ = Yo e € X, Ifllx + {2 o). £ X0} o=

and for r = oo,

AZO(((:;X) = {f = E eiei € X7 HfHX +0§u<p sta'zj(f,g,X) = HfHIAgO(E,X) < OO:|l>
S3J500
(3)



2.2 Unconditional bases

We recall that an unconditional basis of X is a topological basis £ = {ey, }(ne ) verifying
the Shrinkage property : There exists an absolute constant C' such that if |6;| < |0:| for
all 7, then

1Y~ bieillx < CIIY biei|x. (4)

The notion of unconditional basis also has been revisited in the recent year partly because

its importance in statistical applications (see Donoho [14], [15] and Mallat [33]).

If &€ ={e,, n € } isa topological basis (resp. unconditional basis) then {\,e,, n € }

is also a topological basis (resp. unconditional basis) as soon as ¥n € , A, # 0. Hence,

we will naturally associate to an unconditional basis & = {t,,, n € } the mormalized’
Y

[eonllx”

unconditional basis : {e, = ne }

2.2.1 Unconditional bases and linear approximation.

If & = {en, }(ne ) is an unconditional basis, then it is possible to give a description of the
elements of B#(E, X) in terms of dyadics, as we did for A2(E,X) : let f=>"7" 6;e; and
2/ < n < 271 Then

1 1 o0 o o0
aron(f) =&l Y bicillx <palf) = 11D bieillx < CII Y bieillx = Cpa(f)

1=20+1 =29

So:

BIEX)={f =) biec € X, |Iflx +{D_[2°pu(£,€, X))}/ = /]

i=0

93;(€,X) < oo}

with the usual modification for r = oco.
We can also express the previous norms in even simpler forms, observing that:

%H Z 02’62’”X§P2J(f):HZ@ZBZ'Hng:H Z 0:e:)|x

20 <3< 29+ 1=2J k=j 2k<i<2k+1

Using the following well known lemma, we obviously also obtain :

BYEX)={f =) i€ X, |flx+{D "I > Oieillx] 13" = I Bae,x) < o0}

7=0 27 <5< 2911
(5)

(with the usual modification for r = co. )



Lemmal. Let0<s< oo, 0<r <oco. Let (a;) be a sequence of real numbers and for
all j in, let m; =3 s, | |27 (=905 then

[l < Ml < Crsli(ai)]lr-

()l =225 1e5]")

2.2.2 Unconditional bases and non linear approximation.

Let us now observe that if £ = {e;, ¢+ € } is an unconditional basis of X, for all
feX, o,(f,€ X) can also be computed up to constants, in a much simpler way: In
the case where X is a Hilbert space, in the definition (1) of o, we can obviously restrict
to functions of the form h = EZEA f;e; to approximate f = ) .6;e;. The following
proposition proves that if we do so in the case where £ is an unconditional basis, we only
lose an absolute constant.

Proposition 1. Let £ = {e;, 1 € } an unconditional basis of X. Let f =5 0,e; in X.
Then for any A C  and for any linear combination ), .\ Aie; we have :

1F =3 bieillx < A+ O)IF =D Neillx, and

€A tEA

ou(£.6,X) S inf{|lf =S bieillx, card (A) = n} < (1+ C)on(f. €. X).
A

Proof: || f — >, Oieillx < |[f — Do, Nieillx + 1| 2205 Oies — D2, Mied|x-
But || Y2, 0iei — Y25 Mieillx < CJlf =32, Mieil|x- O

2.3 Unconditional bases with p-Temlyakov Property

Definition 1. Let € = {e;, i« € } be a normalized uncondilional Basis of X, p > 0.
This basis shares the ‘p-Temlyakov’ Property if there exists 0 < C7 < oo, such that the
following bounds are true for any finite subset A of

I
FIH[{ 10;( card AP < | Z@iein <4 522}3 10:|( card A)'/? (6)

i€
1 ieA

The pair of inequalities (6) has been introduced in DeVore (1998) [9] and Temlyakov
(1999) [41] and is generally refered to as Temlyakov’s property. We will prove in section
6 that fundamental examples of families verifying (6) are compactly supported wavelet
bases, and associated wavelet-tensor product bases, when the space X is the , space on

4 or [0,1]%, for 1 < p < oo.

This property is a kind of quantified version of the following concept of democratic
bases introduced in Konyagin, Temlyakov 1999 [28] : For all finite A, A’ included in
with the same cardinality, then || >, e ~ || 200 €l



2.3.1 p-Temlyakov Property and non linear approximation.

Let us start with the following definition :

Definition 2. For a countable set I, let us define the non increasing rearrangement of
a family (a;)ier of complex numbers : as the family (|a|m))ner where,

Vn > 1, la|py =inf[A; card {i € I/|al; > A} < nl.
Obviously,
card {i € I/|al; > |a|y} <n < card {i € I/|al; > |a|m)}- (7)

We will have now the opportunity of precising the best non linear approximation of
length n of an arbitrary function f = > 6;e;. We have already proved in proposition
(1) that if {e;, ¢ € } is an unconditional bases the search for the best non linear
approximation can be restricted to only consider ), f;e;, and optimize the choice of
A. If in addition, we have property (6), the following proposition precises an easy way to
choose A.

This proposition is proved in [28] in a more general context. We give here a more direct
proof for the reader’s convenience :

For f =" 60;e;, we say that the subset A, of is n-adjusted if

card (A,) =n, and Zlerif;(|92|) = 10](n) (8)

Without loss of generality, the sequence A, can be chosen non decreasing.

Proposition 2. (Konyagin and Temlyakov) Let £ = {e;, i € } be a normalized uncon-
ditional basis verifying property (6). Lel f =Y 2 0:e; in X. Forn arbitrary chosen in
let us suppose that A, subset of is n adjusted, then for any A such that card (A) = n,

we have
1) biedllx < (14+C+CCH| D biei]|x
1€An igA
Proof :
Z (92'62' = 29262 + Z 92'62' — Z 02'62' hence,
i#hn igh iEAVAL iEA\A
1Y Oeillx < 1D bellx + 11 Y biedllx + 11 Y fieallx
i#hn igh iEAVAL iEANA
But
1) bieillx < CIIY_ biesllx
i€AR\A igA

I bedllx < C1lf]y card (AN AP = [0y card (A, \ A)/7
i€A\An

< CHl Y biedllx

i€AR\A

< COHIY e x

igA



Hence,

1) bieillx < (14 C+CCH| D biesx

igAn igA

2.3.2 Sequence spaces.

The property (6) of the unconditional basis £ = {e;,1 € }, will allow us to define some
particularly interesting sequence spaces.

Let us recall that for an arbitrary sequence (a,) we have defined in definition 2 the non
increasing rearrangement sequence (|al(,)). We also define the following norms.

[e.e]

For 0 <r<oe, 0<qg<oo, |(an)lr= [ (n"laln) 1/n]'/" ~ 1 (29/%)al@n) V"
0

1

(an)llgoo = sup n'/7al(y ~ sup 27/7)a| (2
n>1 7>0
(@)oo = sup al(y = [I(@n)]]oo:
n>1

We recall the following usual notation:
If~ 1[I <= There exist (A, B), Vg, Al|gll < [|g]" < Bllg| (9)

The Lorentz space [, is defined as the space of sequences (a,) verifying ||(a,)|,, <
o0.  ||(an)|lgr is a (quasi-)norm on [, .. It is well known that we have the following
continuous embeddings :

lgp C lgs,for 0 <r <s<oo0, 0<g<oo,.
ly, C lys,for 0<¢ <qg<oo, Vr,s,.
lyg= 1, for q, 0 < q<oo,.

We can also define the following space

lir(E,X) = {f =) bnea € X, such that |[f]ls,, e.x) == [|(0a)]lgr < 00}

2.3.3 p-Temlyakov property and non linear approximation.

The following theorem shows that the previous spaces [, (€, X) for 0 < ¢ < p < o0, can
in fact be identified with the spaces of non linear approximation. Actually, this theorem
is an extension in our framework of a result in DeVore, Jawerth and Popov [10]. It is
worthwhile to notice that the proof given here is completely direct and will not use the
interpolation theory as it is the case in [10]. *

Theorem 1. Let £ ={e;, 1 € } be an unconditional basis.

'While writing this manuscript we heard about the work of Gribonval, Nielsen [22] where the same
result is proved using interpolation theory, together with other more general results on democratic bases.



1. If € verifies the p-Temlyakov property (6), and if 0 < s < oo

VO<r<oo, and q, suchthats=1/q—1/p, AE,X)=1,.(E,X)

2. If there exists 0 < s such thatl for q: s =1/q—1/p, we have
AS(E,X) = lgq(E, X)
then £ verifies the p-Temlyakov property (6).
Proof :

1. The proof essentially relies on the following lemma which allows us to transform

the norm of A3(E, X).

Lemma 2. Let f = >, Orer, 0 be a permutation of  such that |0,;| =

Then if
1/r
S Y bagenlx)
7=0 2J$i<2j+1
and

s ~ 2l 30 Oaeaiol

27 <2741

Proof of the lemma This lemma is a consequence of the proposition (2).

have the following equivalent quasi-norms for A3(&, X) :

n<t
or

1/r

Moreover, let us observe that, as the basis is unconditional,

I Y el <O boyealix

27 <i<20+1 27<1
and
2 0ol <311 3. oyl
20<y k>j7  2k<ig2k+!
Obviously, if
Ve | Z Osy€on]|x = a2, with (a;) €1,, 0 < g < o0
2k§i<2k+1

1/r
X)N<Zn|\29 €a(iyl|x) g) [/ as, &%) NSHPHHZH

n<t

We

eoi)llx

S PIDY bopeplx) | 5 1 )las sstupzf 1 boiyeoiollx
7=0

29<4 27<1e



then

1D bepenilix <D a2 =273 @273 = 270,

< k> k>

But using lemma 1, we have :

1/r
MY bpewlx)
7=0 2J$i<2j+1
and
[/ 14z, &%) NSHPQJSH > teeailix

2<ic2it!
To prove the theorem, we now only need to remark that, using (6):
. 1. :
vy >0, aQJ/p|0|(2]+1_1) < H Z 90(2-)60(2-)”)( < 01|9|(2J)21/p’

20 << 2911

Hence, for 0 < g < p,
1/r

00 1/r 00
(Z(gz/qu))r) ~ [ SN 0,0 lx)

7=0 7=0 20 <i< 2341

and

Sup2y/q|9|2j NsupQJ(l/q-l/P)H Z O, (ir €0yl x -

>0 >0 ;
J J 20 <5< 2041

cLet 0 <s=1/qg—1/p, A}E X)=1,,(& X). So

Vf= 2962, {Z BV gy (F, €, X)) kI ~ Z|0| Y1 (10)

Let us prove that p-Temlyakov property (6). Clearly it is equivalent to prove that
Vi€ . |lellx ~ 1, which is obvious by (10)

and

VAC |, card(A)=n, |Y elx ~n'l?
So let f =3, €. By (10) we have '
{i k= [opa (1, €, X))} ~ e
]
but

L lxn 5 S R4 2 {3 koo (£, €, X)17Y o
1 1

10



This gives one half of the result. On the other hand, let card(A) =2n, f =), €.

on( [, €, XM o (F,E, XD KPR < TR P o (€, X)) P ~ (20)0

n+1 1

This means that there exists a constant A, such that for all subset A C | card(A) =
2n there exists A’ C A card(A') = n, such that HEZEA, eéllx < An. Now, if
card(A) = 27 we can split A in j41 disjoint subsets A_1, Ag, ...A;_1, card(A_1) =1,
and card(A;) = 2! for [ = 0,1,...5 — 1, such that || Dien, Gillx < A7 This , of
course implies that || Y7o e][x < A’2i17 with another constant A’ depending only
on A and X. This gives the second half of the result, at least for subset of  of
dyadic cardinality. but it is easy to conclude.

O
We finish this section devoted to the properties of bases by their consequences on the
approximation of functions.

2.3.4 Thresholding and Quantization.

Let £ ={e;,1 € } be a normalized unconditional basis verifying p-Temlyakov property
(6). In this section we will derive from this assumption an upper bound for the two
following well known types of approximation of an arbitrary function f =) 6;e; € X :
Let A > 0.

1. The A-thresholding approximation of f: . 6;e;1{|0;] > A}.
2. The A-quantized approximation of f: ) .Sign(6;)k;Xe;, where k; = [|6;]/A]. ( [z]

denotes the integer part of z.)

Proposition 3. Let € = {e;,1 € } be a normalized unconditional basis verifying p-
Temlyakov property (6). For 0 < q < p there exist constants Cy, D,, only depending on q
and the constant Cy in (6), such that for any f =Y. 0:e; € l;0(E,X) and XA > 0, € > 0,

1= 0l {16i > Mx = [ Z0ed{6il < eHlx < DATH|0)7 . (11)
1f = Sign(6kideillx = | .(0: = Sign(6)kiNeillx < Cll6]l7 N7 (12)

Where k; = [|6;|/2].

1F = beillx =11 > Gieill, < > I bieillx;

16:]>2 6;]<A >0 Q€A

Where A; = {i/227771 < |0;] < A277}. By (6), we have : || ZieA] O;ei||x < Cy X277 ( card (A]))z%
As (0,) € l;.00, we have : card (A;) < H(Qn)quqoo/\_QQ(”l)q, hence:

I Z iei||x < CIH(Q“)HEI,O@)‘I_% ZQ_jQ(j+1)%-

16:]<A 720

Proof :

11



This proves (11). For (12):
1Y (0:—Sign(0:)kNeillx < || e {10:] < MH[x+I > T{10:] = A}(0i—Sign(0:)k:M)ei|x

q
Using (11), : || >0, GieI{|0;| < A}||x < Dq)\l_q/pHH.Hl’;m. It remains to see, using property
(6), that

1> H10:] > M} (0i=Sign(8)kiN)eillx < CiA ((card {i, 6:] > A)Y? < Cill(B:)]]], N,

O

3 Metric Entropy.

Let us recall the following definitions.

e Let (K, d) a metric space. For every € > 0, we define N(¢, K, d) as the minimum
number of balls of radius €, covering K.

e We define the metric Entropy of K as H(e, K,d) = log,(N(e, K, d))

e Let (X, d) a metric space, and K C X. For every € > 0, we define N(e, K, X, d) as
the minimum number of balls of radius €, centered in X, covering K.

e We define the metric Entropy relative to X as H(e, K, X, d) = log,(N(e, K, X, d)).

If K is considered with the induced metric, it is obvious that :

H(e,K,d) > H(e, K, X,d) > H(2¢, K,d).

3.1 Main Results

An important aspect of unconditional bases and spaces [, «(€) has been pointed out in
Donoho [15] expliciting their link with the metric entropy and the coding theory, in an
hilbertian context. See also Cohen, Dahmen, Daubeuchies and DeVore (1999). We begin
with the following theorem giving the metric entropy for balls of spaces of linear and non
linear approximation.

Theorem 2. Let £ = {e,, n € } be an unconditional normalized basis of some space
X , verifying property (6) with some 0 < p < oo.

1. The unit ball V2 (E,X) of A2(E,X) is never compact, whatever 0 < s < oo, 0 <
r < oo are.

2. Let US(E,X) the unit ball of BZ(E,X), then if 1 < p < oo,

H(e, U, X) < Ve

12



3. let 0 < < s then

H(e,V2(€,X) N US(E, X), X) = e/ log(1/¢)

Remarks :

e the notation ¢(e) < b(e) means that there exists two constant ¢; > 0, ¢; > 0,
crc(e) < be) < eefe), Ve < g < 1.

e As can be seen, the second index r is not visible throughout the behavior of the
metric entropy. However, metric entropy does discriminate between linear and non
linear approximation (at least for 1 < p < o0).

e Points 2 and 3 are proved in the forthcoming theorems 6 and theorem 7. Point 1
is proved in the remark at the beginning of section 4.4.

*

The following theorem extends and precises the result obtained in an hilbertian frame-
work by Donoho [15]. Under some geometrical condition for K, and some a priori com-
pactness property subspaces of A® (&) are characterized by metric entropy behaviour.

Theorem 3. Let us consider K a subset of X. Let £ = {e,, n € } be an uncondilional,
normalized basis of X verifying (6). Let us suppose :

o There exists ¢ > 0 such that, if f = > 0,e, belongs to K then > w,b,e, also
belongs to K for all (wy,),e € {0,1} . Then

H(e, K, X, | ||lx) £ Ce¥* = K C A2 (&, X).

o K is contained in a ball of B (€, X) for some (small) § > 0. Then
K CALEX)= H(e, K, X, | |x) < Ce'ls log(1/¢)

Hence, this theorem proves that if K has the property of orthosymmetry, then a
polynomially bounded entropy implies an inclusion in a specific space of approximation.
Reversely, if K is included in the previous space and polynomially tailed compact, then its
entropy is polyniomially bounded. The proof of this theorem follows from the forthcoming
theorem 4 and the previous one.

The two following sections are devoted to the proofs of these theorems. The first one is
devoted to lower bounds. The bounds are in fact deriving from very simple concentration
inequalities concerning binomial or hypergeometric distributions (see proposition 4). To
prove the upper bounds, in section 5, we shall use coding theory.

4 Lower Bounds

This section will begin with a proposition evaluating lower bounds for the entropy of sets
in the /; norm. This proposition will then be essential to establish the lower bounds for
the entropy of the sets mentioned above.

13



4.1 Computations of the Metric Entropy for two model-sets.

Proposition 4. Lel us consider the following sets :
0, ={0,1}", Ap ={w € {0,1}", Y wi=k} ke
i=1

with the |, distance:
lw — 'l =) Jwi —
=1

The following bounds are true fork e ., k~n® 0<a<]l1:

?

8log(2)
H(k/2, A, 1y) > ((1—@)Zklogk)(1—l—o(1)) (14)

H(n/4,Q,,0l;) > (13)

Proof of the Proposition : Let us consider a covering of ,, by N balls of radius n/4 :
Q, = U, B(w*,n/4). (15)

Let P the uniform probability measure on @, (i.e. forall w € Q,, P{w} = (3)"). Because
of (15), we have :

Y P(B(WF n/4)) > 1

Let us now compute P(B(w*,n/4)).

B nf4) = {w | Y lwi =t S nfa} = {0/ 3 (1/2 ~ o = wh]) > /4.

But, because of our choice for P, the random variables w;’s are independent, so that the
n random variables Z;(w) = 1/2 — |w; — w¥|, are also independent, centered Bernouilli
variables. Using Hoeffding inequality (1963) [23], we get:

PH{w / ZZ ) >n/4}) <exp-— 2( 24)2 =exp —n/8

So we have :

H(n/4,9Q,,0;) >

8log(2)

This proves (13).
To prove (14) we again consider the uniform probability on the space ©, = {0,1}" and
a covering of Ay, by N balls B(u’,k/2), with u/ € A . So

Ck

N
o= P(Arn) < Z B(u',k/2) N Ap,) (16)

14



Let us compute P(B(u,k/2) N Ag,) with u € Ag,. As this quantity is obviously inde-
pendent of u € Ay, let us take u = (1,...,1,0,...,0).

B(u,k/2)N A = {w € {0,137, () _(1— +ZX ) <E/2)N(Y Xiw) = k)}
1 k+1 1

or again

k

B(u,k/2) N A, = | {we{0,1}, O Xiw)=0hn () Xilw)=k-1)}

0<i<k/4 k+1 1
So :
Ol —k Ok ! 1 1 k [k/4]
P(B(u,k/2) N Ayy) = Z on—Fk Z n— ka = 5n 4]Cn—k Cy
0<I<k/4 0<l<k/4

(We suppose here that k << n. In fact % < ”2;]“ is enough.) This implies for covering
number :

ck
N(k/2, Ak h) > 1 1)C[k/4]C]Ek/4]
4
But
Cy k [h/4] [h/4]
10%(([ ] N 1)C[k/4]c[k/4]) log( ck ) log(([z] + 1)) - log(Cn_k ) - log(Ck )

As CF = H] ko f‘” First we have,

=[k/4]
log( C) — log(CH) = Zlog1+— - Z log(1 + 2B
> 3 )2 Sog(1 4+ ) = Flog()
Moreover,
=[k/4] [k/4] _
log(CH/1y - = Z log(1 W4])§/ 10g(1—|—%)d1‘
= k‘log() [k/4]log([k/4]) — (k — [k/4])log(k — [k/4])
< k(log(%) + 10g4(3)) = klog(4.37%*) < klog(2)
So

C* 3k k
10%(w) Z 7 10g(k) klog(2) —log(7 +1)

4

15



This gives, for k ~ n®,
H(k/2, Ao 1) > (1 a)%k log k)(1 + o(1)).

O

The two following subsections will use the inequalities proved in Proposition 4. First,

we will consider the cases where we want to obtain lower bounds without a logarithmic
factor, using inequality (13). The first proposition consider proves the lower bound

inequalities of Theorem 2 for the spaces B(&, X). The second one proves the first part
of Theorem 8.

4.2 ¢'/% lower bounds.
In this section we begin by proving the following proposition:

Proposition 5. Let US(E,X) the unit ball of B}(€,X) for 0 < s < oo, 0 < r < oo.
Then there exists a constant 0 < ¢y < oo such that

VOo<e<l, H(eUEX)||x)> ee Vo
This proposition is a consequence of the following lemma:

Lemma 3. Let K C X and € = {e;,i € } be a normalized unconditional basis verifying
the p-Temlyakov property. Lel 0 < s = % — }%, and let us suppose thal there exists a non

n
decreasing sequence of integers n;, lim n; = 0o, ¢ < —2—. Let us suppose that, for
JTee Ri+1
each j € , there exists a set A; C ,  card (A;) = nj, verifying the following property :
Aj= {07 wier, wie{0,1}} C K.

i€,
Then there exists a constant 0 < ¢(K') < oo such that
Vo<e<1, H(e,K,||x)> (K)o
Proof of the lemma : Clearly

vie , Vex>0, Hie K| x) = H(e Aj llllx)

Let us consider a covering of A; by balls of radius € in the X metric, with center in A;.
Let such a ball be B(u,¢€), u= nj_l/q EZEA] w;e;, for some w € {0, 1},

B(u,e )N A= {n7"" Ny wler, iV (Wl —wiedll, <€}
iEA, 1EA;

Hence, using property 6,
Ct Z |w! — w;| < epné?/q.

i€A,

16



C . . .
Let ¢; = 21—/1])71;5, using inequality (13), proposition 4 :

"

8log(2)

H(ej, Ay [lllx) = H(ng /2,90, 1) 2

But as n; = cej_l/s, the lemma is proved.

Proof of the proposition. Let us use the quasi norms defined by (5) and :

o0

117 Bsey = I11x + (0@ Y biesllx) )"
7=0 27 <5< 2941

A7 By = 1 lx + sup (271 D bieillx),
0<<0

20 << 211
and apply the previous lemma with n; = 2/, s = % — zl?’ A; = {29 <4< 2%} and
A]' = {Q_j/q Z Wi€;, W; € {0, 1}}
20 <i< 2911

Let us again observe that we don’t use here the r index.

4.3 Metric entropy obstruction.

In the next theorem, we see that, under some geometrical condition for K, a bounded sub-
set of X, an entropy behavior of type H(e, K, X, || ||x) < Cxe="/* implies K C A% (€, X).

Theorem 4. Let K be a bounded subset of X. Let € = {e,, n € } an uncondilional,
normalized basis of X verifying p-Temlyakov Property. Let us suppose that if f =5 0,e,
belongs to K then ) wy,0,e, also belongs to K for any (w,)ne € {0,1} .

If K is not a bounded subset of A2 (E,X) then :

limsupe/*H(e, K, X, | ||x) = oc.

e—0

Proof of the Theorem
Let K C  theset of all the sequences (6,,),e such that f = >"#0,e, € K. By hypothesis

Let us first observe that K C l( ): As &€ is an unconditional, normalized basis, and K

is a bounded subset of X, (say by B < 00), we have by (4) for all f =3 60,¢, € K,
Vne [0 = |fnenllx < C|fllx <CB (18)

Now by hypothesis, K is not a bounded subset of [, ..( ) with s = % — ]l), by theorem 1.
So :

sup (sup nl/q|9|(n)) = 00
(6;)EK ne

17



So for all N € * there exists (Y) € K and n = n(N) € , such that n'/16N |, > N.
Using (18), certainly n™'/9N < C'B. So N? < C'Bn and n— oo, with N — oo.
By (17), there exists A €, card (A) = n, and (\)iex with |X\;| > n79N, such that

K, = {Z wiliei, w; € {0,1}} C K.

1EA

Let us compute H(e, K, X) for an appropriate € :
Let ¢ =) cpwidie; and ¢ = Y7\ wikie;, in Ky, such that ||¢ — ¢'||x < an™. Using (6),

Cl_an_l/q(Z |w! — wi|)l/p < Z%’-)\iei — Zwi)\ieiﬂx <an~*
€A 1EA tEA
So
Z lw! — w;i| < na?N"PCY
tEA
Let us take a? N7PC7 = 1/4.
For any covering of K, by balls (in the || ||x metric) of radius an~

of Q, ={0,1}", (in the /; metric) of radius n/4. So

*, we have a covering

N N n

K > H(—— 0~ K, > H(n/4,0, 1) >
Cl4l/pn > X7” HX) = ( n oo, AN H HX) = (n/ 1) 810g(2)

H( Cy4t/P

Let us observe that if forall N € | —Clﬁ/p
oo and K is not relatively compact.

n~*>a>0asn — oo, then H(a, K, || ||x) =

Otherwise if ey = —Clivl/pn_s, liminfy_ o ey = 0 and
1
H K > C,41/Py=1/s ~1/s \r1/s _ % ~1/s \r1/s
(6N7 X’ H HX) - 810g(2)( 1 ) 6]\7 EN

and we get the result.

4.4 ¢'log(1/¢) lower bounds.

We now want to compute the lower bound of the metric entropy of balls of the spaces
As(€,X). First let us observe the following remark:

Remark : The balls of AZ(E, X) are not relatively compact subsets of X : The set €
is in the unit ball of these spaces and moreover if ¢ # j, then |le; — e;]|x > %HG'AHX = %
Hence, to calculate the metric entropy, we will intersect A2(E, X) with compact sets
and especially with the following ones (also called polynomially tailed compact): balls of

B (€, X), with small 0 < §. %

Theorem 5. Let V(E, X)) the unit ball of AS(E,X) for 0 < s < oo, 0<r < oco. Let
0 < < s. Then there exists a constant 0 < ¢ 5 < oo such that

Vo<e<l, H(eVIEX)NUS(E,X), ,)> cose o log(1/e).
This theorem is a consequence of the following lemma:

18



Lemma 4. Let K C X and € = {e;,i € } be a normalized unconditional basis verifying

p-Temlyakov property. Let 0 < s =1 — ]l), 0 <a<l; 0<ec Let us suppose that there

q

. n;

exisls a non decreasing sequence of integers n;, lim n; = oo, ¢< —2. Let kj ~ ng.
Ieo Mj+1

Let us suppose now that for each j € | there exists a set A\; C ,  card (A;) ~ n;,

verifying the following property :
Ay ={ES wier, Y wi=k} CK.
i€, i€A,
Then there exists a constant 0 < ¢(K') < oo such that
Vo<e<1, H(e,K,X)>c(K)e Y log(1/e).
Proof of the lemma: Clearly
Ve ,nVe>0, H(e, K, X)> H(e, Aj, X)

Let us consider a covering of A; by balls of radius € in the X —metric, with centers in A;.

Let such a ball be B(u,¢€), u= k‘j_l/q ZZEAJ w;e;, for some w verifying EZEA] wi = k;
Blu, )N Aj = (k77D e D wi=ky kD (@l - wel, < e}
iEA; 1EA; i€A;
This implies, using p-Temlyakov property,
Cy Z |w! — w;] < 6p]{7§)/q.

i€A,
1,
Let ¢, = —k>°, we have :
7 21/]) J

3
H(ej, Ay X) > H(k; /2, Ag; nyn 1) > (1 — G)Zk]‘ log k;)(1 + o(1)).

But
kilogk; = c 6;1/5 log(1/¢;)

Proof of the Theorem :

We apply Lemma 4 with n; =2/, s = 5 — 7%, A ={2 <i< 2%} a= g and
Aj={27021% i wi€s, wi € {0,1}, EZEA] w; = 279}, We again observe that we
don’t need to use the r index.

5 Upper bound. Universal coding.

Let {e;, ¢ € } be an unconditional basis of X verifying (6). We are going to consider
the problem of evaluating upper bounds for the entropies of the sets considered above
in a slightly more general framework involving their coding numbers. More precisely, we
will investigate the length of a very simple universal coding.

Let us first recall the following definitions :
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5.1 Coding

e Let (X, d) a metric space and K C X. An e- coding of K of length [ is given by
two functions :

C: K — {0,1}", (the "encoding” function) and
D :{0,1}' — X, (the "decoding” function), such that
d(DC(z),z) < e
e Let us define L(e, K, X, d) as the minimum length [ of an e coding of K .
e It is obvious that :
H(e, K,X,d) < L(e, K, X, d) < H(e, K, X, d) + 1.

Let us now give a description of the coding we shall consider:

5.2 Universal coding.

Our coding will have 2 tuning constants :

A>0and n €

Of course, its length will highly depend on these 2 constants. Let us consider f =" 0;¢,
and the following steps :

1. Replace f by its A quantized approximation
~ 0; .
f= | Z [X] Asign(0;)e;
1<n,|0; | >\

2. Consider the following subset of
{1 S i S n7|92| 2 /\} = {ilai%"' 7ik}

3.
Ve e * d(sign(z)) = 00, if >0
d(sign(z)) = 11, if = <0.
Vme ,m#0, ¢(m) = aja;...azaza1a 0000

ifm = ao—l—a12—|—a222...aj2j.
4. Encode f by the following formula :

c(il)Olc'(sz’gn(z\il)c([ﬁ])Olc(ig —11)01
)\

A

d(sign(Xy,)e(] /(2 j01...
iy — 1421)01 (sign(A;,) )e ([)\7]01
cc(iy — ix-1)01 (sign (i, )e ([ g

20



Hence, we use 01 as separator, and we double the dyadic representation of the integers.
So there is no ambiguity to reconstruct f. We have the following lemma :

Lemma 5. The length of the code described above is :
S 0;,
AR =10 Am 42 3 Togli —is) 2 3 Tl %) (19
1<5<k(f,An) 1<5<k
We take for convention that 19 = 0.

The proof is obvious just noticing that :

L) = k(LA +2 Y (ol — i)+ 1) +2 3 (o2 1)

1<5<k(fAm) 1<k

5.2.1 Entropy of balls of non-linear approximation spaces

Theorem 6. Let U’(E, X) be the unit ball of BS(E,X) and V*(E,X) the unit ball of
As(E,X). For0<d<s<oo, 0<r < oo, the previous coding with

_5 €
~— 20
nh (20)
CO N = % (21)
: PR 1 : . . :
is an e-coding if q is such that s = — — — and C, is the constant given in inequality (12)
q P

of Proposition 3.
Moreover, there exists lwo constants 0 < ¢, 5 < U5 < 0o such that

V0 <e, 05756_1/8 log(1/€) < H(e, V(E,X) N U(fo(E,X), ») < 05756_1/8 log(1/e).

Proof of the Theorem :
Using inequality (12) and Theorem 1, it is clear that the constants are exactly chosen in
such a way that the previous coding is an e-coding.

The left hand side of the inequality is given by theorem 5.

We will prove the righthand side for V2 (€, X). This will be enough, due to the inclusion
VA(E,X)CVI(E X).

Hence, we have to find an upper bound to (19) for f € V2 (&, X) N U (€, X).

Let us observe that, ||(6;) < 1, implies |6;] <1 for all 1.

g <

Because f € V2 (&€, X), we have
1
K Am) < ()7 = O,
Hence,

S tom(%]) < KA ) loma() < (1) Toral5) = O(c* log(1))

€
ISjSk(f,)\,n)
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Moreover, using Jensen inequality :

Z log,(i; — ;1) = k(/, /\771)% Z logy (i — 1j-1)

1<i<h(fAm) kU dm) | S
1 . )
< klogz(z Z (1; —4j-1))
1<j<k
n
< klog, —
= 0g2 k
But :
[‘, [, [,7 [,7
0<z<K r  elog?2 0<w<a< K T a
-1/8 1
as eV << n~ 6_1/5, k‘logg% < ele log, 6_1/ = 0(6_1/5 10%(_))
€ /s €

5.2.2 Entropy of balls of linear approximation spaces

Theorem 7. Let {e;, 1 € } an unconditional basis of X verifying (6) with 1 < p < co.
Let U (E, X)) be the unit ball of B¥(E€,X) for0 < s < oo, 0<r < oo.

The previous coding with

€ 1
~ (Z)" s 23
no~ () (23)
CONT = % (24)
: P 1 : . . :
is an e-coding if q is such that s = — — — and C, is the constant given in inequality (12)
q P

of Proposilion 3.
Moreover, there exists a constant 0 < ¢, < C < oo such that

V0 <€, ¢,/ < H(e,UE,X),X) < Che Mo,

Proof of the Theorem:
As above, it is clear using inequality (12) that the coding is an e-coding,.

The left hand side of the entropy inequality is a corollary (5). Again, we will prove
the righthand side for U2 (€, X). This will be enough, due to the inclusion U?(E, X) C
Uz (€, X). We have to find an upper bound to (19) for f € U’ (&€, X).

Let us introduce .J such that :
n=2 ~ ¢t/

LA =0+ Y o=+ Y g2

1<5<k(f,An) 1<5<k(f,An)
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Again, using (22),

kg 21<]<k10g2( i]:—l)
k10g2( Zl<]<k( _fol))
klogy (%) < qieg ™ o

— elog2 elog 2

213]‘910%2(@'1‘ —ij-1)

IA N

Moreover, let A; = {2/ < <2/ 16;] > A\}. We have:

1Y bieilx <CIIY bieillx < 0277

1€EA; 1=2J

As e ~ 2775 and \ ~ 277/4

Z 10%2[|e/<j|] = Z Z log,[ ’

1< <k(f,An) J=0i€A;

Using Jensen inequality and denoting |A;| = card Aj,

0, o4,
S log, (1] = |A|Zlo gal

i€A, i€A,

< A1 1 104

< [Aj]log, ,Z[ ]
1451 4

= 4l % aeA}>
1 1<1

= |Aj|10g2 |Z |7 . j)
f 1<I

Using (6), we have

0:] . :
(IN)P card {I < |/\|, i€ A <4 Z O;e:] < CLO277°P

i€A,
So
C,C277s 1 C,C2-isp 1
Zlogg ) < |A;]log, <|A | Z =TTy ) = |A;]log, (m*Q_Jp/q Zl—p)
1EA; 1<

1
But p/¢g=sp+ 1, and as p > 1, Zl—p:Cp<oo.

1<I

Z log, ([

1EA;

) < |4;|log, <|A | CLCCL2” JSPQJp/q>
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By (22)), we have, as |A;] < 2/ << CC,279027v/1,

, 1 , , ,
|A;]log, <| A CLCCL27 fsszp/q> < 2 log, (2—] Clccpz—JSP:zJp/q> = 27 log, (C12(7=ie/)

So :
0; J
>, loga([) = DD logs(]
1sisk i=0 €A,
< 22] —J P/q—|-10g2(0 ))
J
- (p/ I3 =) o€ )ZT(H)> ~ 0@
O
6 ,— spaces and wavelet bases : Unconditional bases

and p-Temlyakov property.

6.1 Unconditional bases in , spaces.

In this paragraph we give a characterization of unconditional bases in P spaces for
1 < p < 0o. These restriction is due to the fact that in general there is no unconditional
basis if p ¢ (1,00) (see Lindenstrauss and Tzafriri 1977, Proposition 1.d.1).

Theorem 8. Let (X, 7) be a measure space. Let {¢;, ©+ € } a sequence in P(X,7),
with , 1 < p < oo. The following facts are equivalent:

1. {4, v € '} is an unconditional basis of P(X,T).

2. {ti, 1 € } is a total system in P(X,dx), and there exists K > 0, such that, for

any set Fincluded in , and any choice of coefficients ¢;’s,
KDY adsilly < IO Teidil) 2l < KD il
e F e F el

This result is stated in [13]. The proof relies on Khinchine inequality. The major
striking fact about Theorem 8 is that if {+;, 7+ € I} is an unconditional basis of ?. then
for

=300 Il ~ I 10 )2 - (25)
1€ 1€

Notably the Fourier basis is not an unconditional basis of , for p # 2 (see Kahane

et al. 1977 [24]).
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However, it is a classical result, that wavelet bases, with compact support, are un-
conditional bases for , spaces on or [0, 1]. This beautiful results is a consequence
of Calderon-Zygmund theory (see Meyer [34]). We can immediately deduce as a corollary
of Theorem 8 an unconditional basis for , spaces on ¢ or [0,1]¢, by just taking the
usual tensor product of the wavelet basis. However, this usual tensor product is no longer
linked with the multiresolution analysis. It is no longer a wavelet basis, in the sense that
it is not obtained by dilating by a single scale and translating.

In this framework, it is often more convenient to consider the so called wavelet-tensor
product which preserves the property of being a wavelet basis.

6.1.1 Wavelet-tensor products.

Let, ¢, @ a system, where ¢ is the wavelet and ¢ the scaling function. ¢;i(z) =
2024(2x — k), ip(x) = 20/%(292 — k), the associated translated-dilated functions.
Let us consider the triples (j,k, A) where j € |, k= (ki,... ,ks) € %and A € S, the
set of all the non void subsets of {1,... ,d}. For such a triplet we consider the functions

qbka ¢(j,k,A): d —

d
¢k($17"- 7$d) = H¢0ki($i)7
Yiany (@) = [[vm(@) T din (@)

icA igA

The system {¢*, k € 4, txa,7 € , ke % A€ S} isan orthonormal family of

4 called the wavelel-tensor product, see Meyer [34]. One can also prove (see Meyer [34],
ch 6) that these wavelet-tensor products constructed on compactly supported wavelets
are unconditional bases for , spaces on ¢ for p € (1,00) or [0,1]% as well, with the
usual modifications (see Cohen, Daubechies and Vial 1993). In this setting, the index
(7,k, A) is composed of a pair (I, A) of a dyadic cube [ = (j,k) in %, and a non-void
subset A of {1,2,...,d}. Let us denote by I the set of such pairs. We will also us denote
by (;/J(;’A))(Z’A)Ef, this wavelet-tensor product basis.

6.1.2 The Hardy space H, for 0 < p < 1.

For 0 < p <1, formula 25 no more characterizes , spaces. These spaces, usually, don’t
have inconditional bases. However, if the family e; is a suitable wavelet basis (see [34]
for precise conditions) then formula 25 characterizes the Hardy spaces H,( ). So the
previous results are also valid for these spaces if e; verifies the condition 6 which will be
established in the following lines.

6.2 Superconcentration Inequality

We will first make a review of some embedded properties for a sequence (e;);e of real
valued functions defined on a measured space (X, i). The last one will be the p-Temlyakov
property. The first one is the superconcentration property. We will prove that this
property can be proved for wavelet bases.

25



e Superconcentration property (for ,.) Let {e;, : € } be a sequence of real

valued functions defined on some measured space (X, ). We say that this sequence
of functions satisfies a superconcentration inequality (for ) if :

For any arbitrary 0 < r < oo there exists a constant C ( only depending on p,r)

such that :
vac Y fertt

1EA

p < C(p,r)| sup |e]||,-
1EA

H, property (for ,) The sequence {e;, 1 € } satisfies the H, property (for )
if there exists 0 < K, < oo, such that any arbitrary

[ty < w [ el
A A

Of course only 0 < o < 1 is of interest.

e p-Temlyakov property (for ,) The sequence (¢;);c satisfies p-Temlyakov prop-

erty (for ) if there exists 0 < ¢ < Cy < 00, such
oo [ Skl [l <o [ Sl
1EA 1EA 1EA

It is an elementary consequence of Theorem 8, that for ,, the p- Temlyakov prop-
erty takes this form (if of course Vi € | |lei]|, < 1).

The following proposition is establishing the implications between the properties men-

tionned above.

Proposition 6. 1. The superconcentration property implies the H, property,

forany0 < o <1,

2. If a sequence {e;, i € } verifies the H,, property for any 0 < a < 1, then it verifies

the p-Temlyakov property.

Proof of the proposition

1.

2.

/(XA: |ei|Pa)1/a — /(XA: |ei|pa)p/pa

Let us put r = pa, using the superconcentration property we have

/D@ <cp,>/sup|ez|p<0p, /zw

€A 1EA

(a) Let 2 <p, then 3, |e;P < (32, [ei]?)"/?. Hence, S22 lel < [(32a lei] )P/
On the other hand if the H, property is verified for @ = 2/p < 1 then

ﬂZm%zﬂ;MMWsm/;MP

1EA
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(b) Let 2 > p, then (35, [e;*)?/? < 32, |eif. So f(ZA l€il?) S J 24 leil?. But
using the following lemma with ¢; = |e;|?, r=a <1 =35, 1 <t =2/p then
there exists a constant K independant of A such that

[ < [

Lemma 6. Let (¢, 1 € ), a family of measurable functions, defined on some measured
space (X,dr). Let 0 < r < s. If :

/(Z |¢i|r)%d7' < C/ (Z |¢Z|5)ld7 < o0.
X ic X ic
ThenV s <1 < oo,
. r(i=s) .
/ (D i) dr < 076 / (D lod)dr
Y e X g

Proof of the lemma : As 0 <r < s <t < oo, thereexists 0 < # < 1, such that :

t—s sS—r

= 1 -0t = L.

So, using Holder inequality :

<; [il")+ = Z [l 7" 45i] =1 (Z il ) (; wiv)

1-8

As 1= % + @, using again Holder inequality and the assumption:

/ (X twlytar < ( / <i2¢if>idr>)f( / <iz|wi|f>%dr>>

t(1-5)

< (C/X(ZWHS)%C“)) (/X(Z |1/%|t)%d7)>
So,
JOSERE [(Clediar = c# [ (¥t

O
Remark: The previous proposition can be slightly weakened: For a fixed 0 < p < oo,
to verify p-Temlyakov property, we only need the property H, for a« = 2/p if 2 < p; and
if p < 2, it is enough to have the property H, for some 0 < o < 1.
*
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6.3 Superconcentration Inequality for wavelet bases.

Theorem 9. Lel 0 < p < oo. Lel ()7 a compactly supported wavelel tensor product
basis in ¢ (or[0,1]%.), normalized in such way that ||;||, = 1. Let 0 < p < oo, 0< 71 <
oo be arbitrary. Then there exists a constant C, only depending on p,r, the dimension d
and the wavelet system, such that : for all A C I :

Il

1EA

p S OH sup W)zmp
1EA

The end of this section is devoted to the proof of Theorem 9. We will essentially
need 2 steps: The first one will study the case of the Haar wavelet, the second one will
use the maximal functional to transfer results about Haar wavelets to general compactly
supported wavelets.

6.3.1 The Haar wavelet case.

Let, for z €  the classical Haar function h(z) = 1jg1y(z) and g(z) = 1po,1/9)(%) =1 2,11(2)
is such that the family

{he, kK€ ,giwj€ K€ }, hi(z)=h(z—k), gjw(z)= 2j/Pg(2jfc — k')

is an orthogonal family of |, normalized in such way that ||g;|, = 1. Let us call
(9(;75))(176)613 the wavelet-tensor product associated to the Haar basis. The following propo-
sition is our first step :

Proposition 7. For any 0 < q < oo, there exists Cyq such that, for all A C I,

[ 187 < Co sup [01]
(1)eA (lLe)eA

Proof.
For the proof of the proposition, we only need to consider the case of finite A and
we observe that for z € ¢, we only need to consider those among the 6, ’s such that

0,.(x) # 0, and we certainly have

N ()] < (20— D) sup [0(x)]) Y27

(le)eA (he)er >0

This inequality is obvious. The important point is only to remark that we consider
01,y which are supported by the dyadic cube [ containing x, and any cube sharing this
property contains the smallest one which is the support of the function with maximal
absolute value. The term (2% — 1) only comes from the fact that because of the index e,
it may happen that in A, exactly (2¢ — 1) have the same smallest support.
O
In the sequel, we will forget the double subscrit (i, €), and just for convenience, only
keep 1.

28



6.3.2 The maximal function and the Fefferman-Stein lemma.

Let us recall the definition of the Hardy-Littlewood maximal function (actually a some-
what generalized version.)

Definition 3. Let X = ? (or[0,1]¢) and B the set of the cubes of X. For each B in B,

let |B| its Lebesque measure. Lel 0 < s < oo. For any measurable fonction f, we define
M:(f) - )
Vee X, MI(f)(z)= sup (—/ If1%)*.
1B| /5

BeB, z€B

Remark : 1t is clear that
M;(f) (@) = [M{(1f]")(2)]'?
*
Then we have :

Lemma 7. Let 0; the wavelet tensor product associated with the Haar system in %, and
Y; another compactly supported wavelet tensor product in the same space, with ||6;||, =
60:l|, =1, Vi .
Then for all s >0, there exists C(s,d,0,v), C'(s,d,0,v) such that for any x
¥il(z) < C(s,d, 0,¢)M;(6:)(x) (26)
10:(z) < C(s,d, 0, )M (i) () (27)

The proof is simple, and it is omitted. It just relies on the same localization and size
of the two system of functions, for the same index.
The previous lemma will be used in association with the following important result :

Lemma 8. ( Fefferman-Stein [21])
Let f, be a sequence of measurable functions defined on ¢ (or [0,1]%). Let 0 < s <
p<oo,s<q<oo. Then, there exists C(p,q,s,d) such thal

D (M) Ml < Clpagos, ) I 1l e

(with the usual modification for ¢ = cc.)

Actually in Fefferman-Stein [21] the previous statement is given, and proved for s = 1,
and 1 < p,q < oo. But it is not difficult to derive lemma 8, using the remark 6.3.2.
Furthermore, for ¢ = oo, it is enough to observe that :

sup M (f») < M7 (sup | f])
and to apply the classical maximal theorem :

for 1T<p<oo : HMl*(SUP |fn|)”p < Op” sup |fn|Hp
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6.3.3 Proof of Theorem 9: second step.

We can now begin the proof of our theorem. Let 0 < s <r, 0 <s < p.
Let 6; denote the Haar wavelet-tensor product basis on the same space and with the same

index, as the v;’s. Let A C 1. Using (26),

il < Cls,d,0,0)> [MI(6:)])

1€EA 1EA

Using Lemma 8§ :

I 1Mz (617l < Clpyry s )Y 1677
€A €A
Using Proposition 7
> 16:777 < Crasup |6
ieA teA
Using (27),
sup |0;| < C'(s, d, 0,1) sup [M](¢5)].

ieA i€A
Using Lemma 8 :

[['sup [M; ()], < C(p, 00, s, d)|| sup |shi[],-
tEA €A

This proves :

1O 1il)*

€A

p < C(s,d,0,9)C(p.r,5,d)CraC'(s,d,0,)C(p, 00, s.d)| sup i)l
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