Minimax or Maxisets 7

Gérard Kerkyacharian ' and Dominique Picard 2

October 2, 2001

Abstract

In this paper, we discuss a new way of evaluating the performances of a statistical es-
timation procedure. This point of view consists in investigating the maximal set where a
given procedure has a given rate of convergence. Although the setting is not extremely
different from the minimax context, it is in a sense less pessimistic and provides a functional
set which is authentically connected to the procedure and the model. We also investigate
more traditional concerns about procedures: oracle inequalities. This notion becomes more
difficult even to be practically defined when the loss function is not the 5-norm. We ex-
plain the difficulties arising there, and suggest a new definition, in the cases of ,-norms
and point-wise estimation. The connections between maxisets and local oracle inequalities
are investigated: we prove that verifying a local oracle inequality implies that the maxiset
automatically contains a prescribed set linked with the oracle inequality. We have investi-
gated the consequences of the previous statement on well known efficient adaptive methods:
Wavelet thresholding and local bandwidth selection. We can prove local oracle inequalities
for these methods and draw the conclusions about there associated maxisets.
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1 Introduction

The recent appearance of nonparametric estimation methods offering a high degree of adaptiv-
ity has given a renewal of interest into minimax theory.

Back to the seventies or eighties, the minimax context was essentially a forest of results from
worldwide researchers seeking for solutions to problems where one specified the problem (den-
sity estimation, regression, spectral density,...), the risk ( 2, , norms), and the functional class
(Holder, Sobolev,...). At this time the impact on the statistical community was not uniformly
enthusiastic. The main reasons probably were the disconnection between minimax paradigm
and the actual situation when one is confronted with real data: Either minimax estimators
where depending on smoothness assumptions which were mostly impossible to verify, or ( for
some procedures which were really new ) were impracticable. At the same time, a real inter-
est in practice for methods developing spatial adaptation had a considerable influence on the
statistical community. In the nineties, the development of wavelet methods and in parallel
of local bandwidth selection has partially reduced the gap between theory and practice. The
minimax paradigm has not disappeared. The general framework was enhanced with new spaces
to better reflect the spatial adaptivity (Besov, Triebel,...). Moreover, the general concern of
the minimax community for seeking for adaptive procedures is a serious answer to the question
of tuning the smoothing parameters. Indeed, the easiest way to theoretically prove the high
performances of these procedures for the analysis of functions with inhomogeneous smoothness,
was still to establish that they allow minimax convergence rates close to optimal over large
function classes. In parallel, a deep understanding of the minimax most striking evidence, the
traditional trade-off between bias and stochastic term has been an essential source of inspiration
for the construction of these efficient methods.

However, part of the aversions and reluctance of the statistical community remained and
some arguments are substantially difficult to deny. The inclination to expect the worst reveals
to be generally too pessimistic to accurately reflect the practical purposes. Moreover, in the
nonparametric context, the minimax theory investigates the rates of convergence for different
sets of functions. Another drawback lies in the essential difficulty to a priori choose these sets,
in an appropriate way. Even in a adaptive context, this difficulty remains.

Our first aim will be to discuss a new way of evaluating the performances of a procedure.
This point of view, rather standard in approximation theory ( Saturation class linked with an
approximation procedure) is more unusual is Statistics. It consists in investigating the maximal

set where a procedure has a given rate of convergence. The setting is not extremely different



from the minimax context but it has the main advantage of providing a functional set which is
authentically connected to the procedure and the model. In a sense also it is less pessimistic.
When looking for minimax procedures over a fixed functional set, or adaptive procedures with
respect to a range of sets indiced by a smoothing parameter (like Holder spaces indiced by the
smoothness parameter o) we are seeking in fact for the most difficult functions in this set to be
estimated by a general procedure. But in fact this set of ”bad functions” is strongly depending
on the definition of the smoothness : Most defavorable a priori measures or sets of functions in
the Assouad’s cube or Fano’s pyramid do not look the same at all if we refer to Hélder classes
or to Sobolev spaces for instance. Moreover they usually do not reflect what we expect to
find in practical situations. As a consequence it is somewhat difficult to feel motivated. When
seeking for maxisets, we look for functions which are the most difficult to estimate for a given
procedure. Besides the fact that it is an interesting information for the procedure itself, it has
the main advantage that the smoothness parameter will not come from an artificial external
choice of spaces, but will be naturally connected to the procedure. We still are looking for the
worst, but in a ”pragmatic” context, not in an imaginary one. Another side advantage of this
point of view is often to produce new classes of sets (or to rediscover forgotten ones, as here)
which contain the classical Besov spaces for instance. This provides an opportunity to enhance
the minimax paradigm, since procedures automatically are minimax on their maxisets.

The second aim of this paper is to prove that maxisets are not only connected to minimax
theory, but also with another new and important way of evaluating the performances of statis-
tical procedures e.g. oracle inequalities. The concept of oracle inequality has been introduced
in statistics by Donoho and Johnstone (1994) to reflect the idea of performing, as if having an
"oracle”, "nearly” as the best of a whole class of procedures (see also Donoho and Johnstone
1995). One of the major differences between oracle inequalities and minimax theory is that
oracle inequalities are more oriented toward the function to estimate. This notion proves to
be very efficient, in many contexts. However it becomes more difficult to use when the loss
function is not the o-norm. We are going to explain the difficulties arising there, and suggest
a new definition, in the cases of ,-norms and point-wise estimation.

Surprisingly, the connections between maxisets and local oracle inequalities are in fact deep
important and one of our goal in this paper will be to emphasize them. Especially, they will be
illustrated by Proposition 3, where it is stated that verifying a local oracle inequality implies
that the maxiset automatically contains a prescribed set linked with the oracle inequality. We

have investigated the consequences of the previous statement on well known efficient methods:



Wavelet thresholding and local bandwidth selection. From adaptation or minimax point of view,
all these procedures are equivalent. We can prove local oracle inequalities for both methods as
well as for an hybrid procedure, which proved in different contexts to be of particular interest
(especially for confidence interval, purposes, see Picard, Tribouley (2000). The maxisets of the
thresholding procedure can be precisely identified. For the two other ones, we do not obtain a
complete identification. However, this allows us to formulate the following concluding remarks:
As far as maxisets are concerned, the local bandwidth selection and the hybrid procedure are
at least as good as the thresholding. Whether they are strictly better is an opened question, as
well as the comparison between them.

The paper is organized as follows: Section 2 is devoted to maxisets. Especially, the explicit
maxisets for linear kernel methods as well as thresholding procedures are given.
Section 3 concerns oracle inequalities. We provide definitions of such inequalities for ,-norms
and in the local context. We investigate the consequences of oracle inequalities over the mag-
nitude of the maxisets.
Section 4 investigates the examples of adaptive procedures mentioned above.
Sections 5 and 6 investigates the respective positions of the functional spaces appearing in the

definition of the maxisets, and the consequences on the comparisons on the procedures.

2 Definition and examples of Maxisets, comparisons of proce-
dures

It is a classical topic, in Approximation Theory, to study, for an a family of operators U, in

some functional space X, the set of functions f € X, such that

1f = Un(Hllx = Olen),

were €, is a sequence of positive numbers, decreasing to 0. This is known as the saturation class
linked with the sequence U,, and the rate ¢,. See for example Butzer, Berens (1967), Butzer,
Nessel (1971) , DeVore, Lorentz (1993).

We will, now, give the definition as well as a motivation of the maxisets. This definition is
illustrated with nonparametric examples. We consider a sequence of models &, = {P},0 € 0},
where the P7'’s are probability distributions on the measurable spaces €2,,, and © is the set of
parameters. We also consider a sequence of estimates §, of a quantity ¢(f) associated to this

sequence of models, a loss function p(§,, ¢(f)), and a rate of convergence «,, tending to 0.

Definition 1 let us define the maxiset associated with the sequence §,, the loss function p,



the rate o, and the constant T as the following set:
M (G, ps ) (T) = {0 € O, sup §p(dn; (0)) (n) " < T}
In various parametric cases, we can easily prove in regular sequences of models that we have
MS (G, py 0™ ?)(T) = ©

for various homogeneous loss functions and large enough constant T. Although it might be
useful and interesting to investigate more precisely the domains where the rate is precisely
not n~1/2 (domains of superefficiency, or underefficiency), we will focus in this paper, on the
nonparametric situation. Instead of a priori fixing a (functional) set such as a Hélder, Sobolev
or Besov ball as it is the case in a minimax framework, we choose to settle the problem in a very
wide context: The parameter set © can be very large, such as the set of bounded, measurable
functions. Then, the functional set (maxiset) is associated with the procedure in a genuine way.

Let us start with 2 examples :

2.1 Density Estimation: Kernel methods.

Let X;....,X,, be nii.d. random variables, having the density f. We want to estimate the
density f. Let us fix 2 < p < oo, and investigate the problem with the ,-loss: i.e. for a

procedure fn,
p(fnvf) = an - f”g

We take as set of parameters O, the set of all densities included in a (large) ,-ball. This is
reasonable, given our choice for the loss function. We are going to investigate the maxisets of

the following sequence of kernel procedures:
. 1>
Ejy(@) i= — 3 Ejm (2, X3).
=1

E(u,v) is a kernel, E;(u,v) = 2/F(2/u,2/v). Typically, E; will be the projector onto the
space V; of a multiresolution analysis (i.e. E(u,v) =) ¢(u— k)p(v —k)), or the following
convolution : E(u,v) = E(u—v). j(n)is an increasing sequence : 2/(*) = n(1=2) with o € (0, 1)
(see Kerkyacharian, Picard 1992).

Let us denote by B;, , the Besov space and Bg, ,(M) the associated ball of radius M (for
the definition and properties of Besov spaces, we refer to Meyer(1990), Nikolskii(1975)).

Then a consequence of Theorem 2.1 in Kerkyacharian, Picard (1993) is the following result:

(see also Hardle, Kerkyacharian, Picard, Tsybakov (1998) ch 10.)



Proposition 1 Under the following conditions:
e F is compactly supported.
o [(y—2)*E(z,y)dy = doy, for all k=10,1,...,N.
e FoFE;=F;oF, forall j > 0. (Here F o F; stands for the composition of E/ and F;.)
o z — F(z,y) is N times continuously differentiable.

* o, = (2]n—n))p/2 = nop/2,

2s
1+ 2s

or, o =

~ . o
MS(E](n), f, Cl(n) = 0N Bs,poo with s = m

Here and throughout the paper
MS(E]-(n), fran) =10 N B oo (1)

mearns:

(i) For any T, there exists M such that MS(F;(,), f, an)(T) C O N Bsp (M)
(ii) For any M, there exists I' such that MS(EJ-(,L), fra.)(T) D ON Bspoeo(M)

2.2 White noise model: Wavelet thresholding.

Let us observe the following differential equation,
1
vn

where W; is a standard Brownian motion on [0, 1]. Our aim is again to estimate f. Let us fix

dY7 = f(t)dt + —d Wy, t € [0, 1], (2)

1 < p < o0, and investigate as in the previous example, the problem with the ,-loss. Let us
fix, as above a in (0,1). We take as set of parameters O, a ball of the space B, /3 o This
set corresponds to the idea of a minimal regularity which is always necessary for the non linear
procedures. Notice that a/2 is always smaller (and often much smaller) than s introduced in
the proposition above. In particular if & < 2/p, © contains discontinuous functions. For a pair
of scaling function and wavelet ¢, 1, let us define the following sequence of procedures:
F@y=3" 3" Bud{IBixl > Ktn}gi—1x(),
0<5<Tn K

where g;r = ¥, for j >0, g_11 = dork,
Bit = fio1) 9i-1,6(x)dVn(2)

ty = /282, 200 <52 < 2Intl

n



Let us introduce the following sets of functions:

W (p,q)(M) = {f €y sup A Y02k, 155 > 0 < Mq} (3)

A0 >0

Obviously, for p = 2, W*(2,q)(M) selects the functions such that their total number of 3’s
greater (in modulus) than X in the positive scales in less than (MA~1)9. For the cases p > 2, we
also ”count” the 3’s greater than A, but with a penalization in the counting for the large scales.
These spaces prove to have a special importance in approximation theory ( Cohen, DeVore,
Hochmuth, 1997 ), coding ( Donoho, 1996 ) and estimation ( Donoho and Johnstone, 1996 ).

Then a consequence of Theorem 7 in Cohen, DeVore, Kerkyacharian and Picard (1999) is the

following result:

Proposition 2 For o, = (t,) = (1&2)(1/2),

n

MS(T, f,an) =:© N W*(p, (1 - a)p)
3 Local Oracle inequalities and Maxisets

This section is divided into 2 separated parts. The first part is essentially concerned with oracle
inequalities. Particularly, we begin with the standard case of 4 oracle inequalities. Then, we
explain a way to overcome the difficulty to generalize to other norms, and to local inequalities.
This part is a priori essentially disconnected with the previous section about maxisets. The
relations between the 2 notions are clarified in the second part of this section (3.2) where the
consequences of local oracle inequalities in term of maxisets are studied.

We again consider a sequence of models &, in which we estimate a function f defined on
X — . X is a measurable space. It is equipped with a measure y, such that u(Xx’) < co. The
most common example of X is [0, 1] or [0, 1]% equipped with the Lebesgue measure. f is assumed
to belong to some basic functional space V ( for instance V = ). We consider a sequence
of linear operators £;,j > 0 associating to any measurable function f defined on (X,p), a
measurable function F;f. Typically, as above, F; will be the projector onto the space V; of
a multiresolution analysis ( E;f(z) = [ Y 270(27u — k)¢(2/z — k) f(u)du.), or the following
convolution : E;f(z) = [2/E(2/(u — z)) f(u)du.



3.1 From ;-oracle inequalities to local ones.

3.1.1 s-oracle inequalities.

Following Donoho and Johnstone (1994), we say that the estimate f satisfies a j-oracle

inequality with the class C of estimators at the rate ¢, if for all n > 1,

allf = FI3 < e inf{ ]| ® - fI13, ¢ €CY. (4)

(4) is exactly expressing that, up to rate ¢, f is behaving as the oracle estimate of the class C
-i.e. the best estimate among the class C ( as if an oracle was telling for each function which
estimator was to be chosen) -. ¢, measures the loss of efficiency of f compared to the oracle
estimator (which generally is not an estimator since the optimal choice may depend heavily on
the function to estimate).

As a prototype example, it can easily be proved that the wavelet thresholding estimator in
the white noise model satisfies a s-oracle inequality with the class {E]” = [ Ej(z,t)dY,j > 0}
of estimators at the rate

¢, = (1+ logn),
if the F;’s are the projections on the V}’s.

Hence we immediately see that oracle inequalities may be a very useful property for a
procedure. However, it seems that up to now, there is no full agreement in the statistical
community about the most suitable distance to reflect well the visual properties of estimation
procedures. In particular, two functions may look very differently although they are very close
in 9 norm. As a consequence, a natural question is : Can we also prove oracle inequalities for
different norms ( , for instance), and also oracle inequalities at a point ? Let us first observe
that an oracle inequality of type (4) gives us information about the quality of the procedure
for ,norms, with 1 < p < 2, because of the finiteness of the measure u. However, it does not
tell anything about the other norms. To be able to consider oracle inequalities for general
norms, it is more convenient to have first a slightly different understanding of (4).

Let us evaluate in the prototype example above (still in the white noise model), the quantity :
inf{ o[|E} — fl3, j > 0}.
We have, by standard calculations,
allE7 = FlI3 = 3 + 1Eif = J13

Hence we observe the standard trade off between an increasing and a decreasing quantity. This

last quantity is decreasing in j because we use the 5 norm and a family of projection operators



on increasing subspaces. This precisely will be the difficulty when we want to extend to other

situations. Let us introduce :

) =inf{je , 272 E;f - flla < A}

Sofor A>0:
for j>1:{i(f) =34} <= 27U V2E;_1f = flla > A > 2792||E;f - fl2,

for 5=0:{i(f) =0} < {A>|FEof — fll2}
and, for

A= (V2 Gz = () (5)

n

it is not difficult, using the following lemma, to prove that:

c2in - . 2¢ 2in
<inf{ Lf|EF = fll7 5> 0} < ——.
Lemma 1 Let a; and b; > 0, j € be respectively non increasing and non decreasing

sequences. Let j*=inf{j € , a; <b;}. Then :
bi=_y <inf{j € , a; +0b;} < 2b;s.
(By convention b_y = bg.)
Proof of the lemma: Clearly b;x_; < aj«_q,if 7* > 0, and b;x > a;+. So :
inf{j € , a;+b;} <ajy+bj <2

On the otherside : 7 > j" = a; +b; > b; > bjx > bjx_y.
And 0<j<j*= a;j+b;> a; > a3 >bjx_.
|
Let us observe that obviously (as j; strongly depends on f) EA]”; is not a true estimator.

Hence, without loosing much with respect to (4), we define the following property:

Definition 2 We say that f satisfies an oracle inequality for the , norm, on the space

V, the class F; of estimators and at the rate c, =14 logn if :
ollf = FlI3 < Cen2in)2 Y feV (6)

where the sequence 3} defined in (5) is reflecting the complezity of the function with respect to

the sequence E;.



3.1.2 » oracle inequalities associated to a sequence of operators F;.

Let us begin by defining the , analogue of jy\(f).
Let F'(f)(j) be a non negative, non increasing functional defined on

An important example is:

F()(j) = s@pQ‘jl/QHEff—pr (7)
)

J
Now, let

JL(f) =inf{j € ,F(f)(j) <A}
So ;
for j>1:{5(f) =4} <= {F(NHG-1)>1>F(()},

for j=0:{j{(/)=0} <= {A> F(/)(0)}
Again, let us define:

A= (D)2 F =5 (). (8)

n

This leads to the following definition:

Definition 3 Foroo > p > 1, we say that f satisfies a » oracle inequality on V, associated
with a sequence of operators F; and the functional I' at the rate ¢, = 14 logn if the TWO

following inequalities are true for all n > 1.

Af = fIE < Cea(27/20,)P, WfeV 9)

1E;rnf = Fliy

IN

C'IAN2NP W f eV, YA >0, (10)

IN

Remarks :

e This definition easily generalizes to the case p = oo, with the usual modification consisting
of ignoring all the p-th powers in (9) and (10). They also are embedded: Because of the
finiteness of the measure pu, satisfying an , oracle inequality implies satisfying an

oracle inequality for any 1 < ¢ < p.

e We remark that (10) is obvious in the case where I'(f) = F(f) is defined by (7). In fact,
if F(f) # F(f), this inequality is needed to establish a relation between F(f) and the

approximation properties of the sequence F; f.

o If we compare (9) with (6), we notice that the 2 right hand sides are equivalent. If we
now compare (9) with (4), we can’t deny that there might be a loss, since the only thing

that can be said is, there exists C' with
inf{ LB fl2, j >0} < C@F2N,).

10



For p = 2, the 2 quantities where of the same order. For p # 2, as we are considering
p norms we can only hope that they do not differ a lot -and also observe that this is

confirmed by the minimax rates for standard classes of functions-.

3.1.3 Local oracle inequalities associated to a sequence of operators F;.

We’ll mimic locally what has been done above.

1. Let F(f)(j,2) be a non negative functional defined on  x X, such that for p-almost
every z, j — F(f)(j,z) is non increasing. We also suppose that for py-almost every z,

F(f)(0,2) < co. An important example is

F(f)(j, ) = sup 2~ 2|E;i f(z) — f(2)] (11)

323

Fis now a "local” functional.

2. Let
i (fie)=inf{je ,F(f)(j,z) <AL

3. Let now

o= (20102 and (o) = 55 (/. 2). (12)

4. For practical reasons, it is generally necessary to introduce in addition a stopping-sequence
J, tending to infinity, reflecting the fact that, in practice, a procedure will never be able

to consider an infinite number of possible bandwidths.

Definition 4 lLet p > 1 be fizred. We say that the sequence of estimators fn satisfies a local
oracle inequality of order p on V associated with a sequence of operators E;, the local”

functional F and the stopping-sequence J,,, if the 2 following inequalities are true for allmn > 1.

alfa(@) = (@) < CL@POVPL)P | Ejo o) f(2) = [ (@) P+ Eg, f(2) = ()P} Ve eX, VeV
(13)

lIsup |1 E;f = 1] JX(f, ) = 3HE < @\ pfe, G (f2) =5 YAS0,Vi>0,VfeV
3'>3
(14)

where I{A} denotes the indicator function of the set A.
Remarks :

11



e If we omit the terms depending on .J,, and again compare (13) with (9), besides the
localization of the inequality, we notice 2 differences. The first one is the presence of
of the term |Ejx (. f(z) — f(2)|? which was not in (9). However, we could have added
a similar term in (9) without changing the rates of convergence, because of (10). The
second difference is that a logarithmic factor is now appearing in the rate ¢, whereas ¢,

has now disappeared. - However, not completely if we notice that now ¢, is replacing A, .-

o If we now compare (14) with (10), we see that we require here a local comparison be-
tween F°(f)(j, ) and sup;rs; [Ey f(z) — f(z)[I{ =, 3¥(f,z) = j} instead of a global one.

However, this comparison is made after averaging, i.e. in a rather mild way.

%

The following definition corresponds to letting p tend to infinity:

Definition 5 We say that the sequence of estimators fn satisfies an ”exponential” oracle
inequality on V associated with a sequence of operators E;, the stopping-sequence J, and the
"local” functional I if there exist C, C' vy, Ao, such that the following inequalities are true for

alln>1 and all f € V.

P{(2%,)7" sup  |fu(z) = f(2)| 2 A} < Cexp—A?/(2v0) YA Ao, ¥, >35>0 (15)
@, jh(z)=j
Isup By f = FIL G = 3Hleo S C/@720) WA 20,520 (16)
3>

This oracle condition is of course much stronger than the previous ones. Using the fact that a
sub-gaussian random variable has moments of any order, we deduce that satisfying ”exponen-
tial” oracle condition implies satisfying a local oracle of order p for any p > 1, since especially

p(X) < oo.
3.2 Local-oracle inequalities and maxisets.

Let us begin by some definitions of sets which will be connected later to maxisets:
3.2.1 ”Besov bodies”.

Let us put, for v > 0,r > 0,
Byroo (M) ={] € VEf = [l 4y < M277, ¥ j > 0}

12



Though, obviously depending on the sequence of kernels F;, B, , « is intentionally denoted as
a "Besov body”. The reason is that in fact, these spaces coincide for a large variety of kernels
E;. (for instance, projectors on a multiresolution analysis, or translation kernels, with standard
cancellation of the first moments, see Meyer 1990). In these cases, the balls also coincide with

the standard Besov balls. Of course, we can also generalize the definition above with:

Borim (M) = {f €V, D 2NE; f = I 1ga)™ < M™}

i>0
3.2.2 Weak ”"Besov bodies”.

Let us recall the definition of the Lorentz spaces (also called weak ,-spaces or Marcinkiewicz

spaces), for ¢ > 0, and v a non negative measure:
a.00(v) = {g; sup A?r{|g| = A} < oo} (17)
A>0
Let us introduce the following measure on  x X

vy, = Eij/?éj @ p
720
where § is the Dirac measure.

For F' a non negative functional defined on X X, (see §3.1.1), let us put, for p > ¢ > 0,

W(F)(p,q)

{feVv, Ff) e ge()} (18)

= {feV,sup\ ZQj(p/Q)u{m,F(f)(j,m) > A} < oo},
A>0 >0

and the associated ball,

M“Fﬂnqﬂﬂﬂ=={f€l%i?AQESW@”UﬁwJWfﬂﬂw)>A}SZWQ
0 j>0

Let us investigate 2 examples :

1. The first one is associated with the following functional (notice that this one is not nec-

essarily monotone)
Fl(f)(j,ac) = 2_j/2|Ejf(m) — f(z)|, and associated W(Fl)(p, q)(M).

Let @ € (0,1), ¢ = p(1 — ). The following lines prove using Markov inequality, that if f

belongs to By 44(M), and v = 3(i=a) then f belongs to W(F")(p,q)(M). Hence, in this

13



case, W(F')(1%, ¢)(M) appears as a weak analogue of B, ,(M). We summarize this

fact in the following inclusion :

wa(M) CW(FY) (=, ) (M)

—a) l—a’

a9

Indeed, we have, as p — ¢ = ==,

D 20a, F(f)G2) > Ay = D20 uda, 27 B f(x) - f(2)] > A}

= 320
< PP -
720 q
< ATIM

2. If ¢ is a wavelet, and (3; denotes the wavelet coefficient of f (8,5 = [ fv;1), and x;x(z) =
21121{27x —k € [0,1]} is the Haar scaling function, let us consider the case of the following

functional (also not necessarily non increasing)
F2(f)(Go2) = 27772 3 D 1Bjulxin (@) and associated W(E?)(p, ) (M).
k
We notice that W(F?)(p, ¢)(M) coincides with the set W*(p, ¢) (M) introduced in section
2, (3).

In section §6, we’ll investigate more precisely the weak besov bodies for some classes of local
functionals F. Especially, we’ll establish that they happen to coincide rather often. For in-
stance, we’ll prove that if the £, of the first example are the projection on the spaces V;, then

W(FY(p, q) and W(F?)(p, q)are equal.
3.2.3 Local oracle inequalities and maxisets.

We consider a sequence of estimates fn associated with a sequence of models &, .
Let us as above, define the maxiset associated with the sequence fn, the ,-loss and the rate

(t,)°. (We recall that ¢, = (1°&2)1/2),

MS(farps0)(T) = A €V, sup allfa = [I7 4, (1) ™7 < T}

The following proposition establishes a natural correspondence between the previous local oracle

inequalities and maxisets :

14



Proposition 3 Let 3 be a positive constant. If the sequence of estimates fn satisfies a local
oracle inequality of order p, associated with the sequence of operators F;, the sequence J,, and the

local functional I on the space ¥V = B (M). Then, if J,, is such that 2/» < t78 < 2/n+1

a/B,p,co
there exists M', such that

W(F)(p, p(1 = a))(M') C MS(fn,p,)(T)
Remarks :

e The constant M’ may be chosen such that : (the constant C' is coming from inequality

(13))
T = 0[2(1 + QM/p(l—Ol)) + Mp(l—oz)]

e Belonging to the set W(F)(p,q)(M), with ¢ = p(1 — @), may also be written in the

following way: Let vy be the measure on X X defined as above by the formula
vo= (D 8;) @ p.
JE
Then f belongs to the set W(F)(p, p(1 — a))(M) if and only if :

sup A=) 2U/TLF(F) (j, 2) > A} () < MU
A>0

In this way, it is easier to let p tend to infinity. One can prove that we obtain as a

limit, when F(f) = F(f), B 0,00(M). This introduces the following proposition,

2(la—a)

corresponding to the case p = oo, I'(f) = F(f)
¢

Proposition 4 If the sequence of estimates fn satisfies the exponential oracle inequality as-
sociated with the sequence J,, and the local functional F on V = B /g,00,00(M), then if 27n <

t-8 < 201 and
MS(fu,00,0)(T) ={f €V, sup 4|l fu(z) = f(2)lloo(tn) ™ < T}
for a < 1, there exists M', such that

w000 (M") C MS(fn; 00,0)(T)

3T=a)
Remark :
The constant M’ may be chosen such that : (the constant C' here is coming from inequality

(15) )
T=C@2+vV2)M=)
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3.2.4 Proof of the Proposition 3
Let f be arbitrary in V = B, /5, (M), ¢ = p(1 — ).

W[ fn(@) = F@)Pdp =50 o [ 1 fal) = f@)PI{G5(2) = j}dp
<O >0 J{@%t,)P + |E;f () - ()|
HEg, f(z) = f(2)[PHA{G5(x) = j}dp

< CHEA2 Lo 277255 (2) = 5} + 1B f = FIIE}
< 20(1 + 2M'1)i2=7 4 CMP2™ 577 < C(M)tor

We have used the definition of V = B, 3, .o(M) and the following decomposition :

Yitopdin(@) = 327 = p{gn(e) = 0} + 52 pfin(z) = 5320072
< p{F(f)(0,2) <t} + 552, 2720 {F(f)( - 1,2) > 1.}
< p{ XY + 25520 272 u{ F(f) (j, ®) > )}
< XY+ 20, {F(f) > 1o}
<Xy +2FNDNG,, Lt
< p{XY 4 2M"t79 < Mt

as t, <1 and p{X'} is finite.

3.2.5 Proof of the Proposition 4

e Because of the definition of B 0,00 (M), we get : For all j/, 2_j//2|E]-/f(:U) — f(2)| <

M2-3"11/20 =) Hence, if we recall the definition of j(z) (see (12)) and the fact that we

2(la—a)

use the functional F to define j*(z), we find that we must have j*(z) < jo such that
9Jo < CtZQ(l—O‘)

e Using the same argument, we see that the condition f € V ensures that J, < jo.

e Using the previous remarks, we get:

llfa@) = f(@)lloo = nsupjsosup, |fu(e) = f(2)[1{ji(2) = 5}
= nSUPg< <, SUP, |fn(m) — fl@)[I{j(z) = j}
< Qo<i<io nSUPs [fu(@) = f(2)[I{j5(2) = j}
< Togicin C2/ %t < C5

4 Applications to wavelets thresholding and Lepski’s proce-
dures

In this section, we’ll prove that for wavelet thresholding, as well as for adaptive local bandwidth
selection, we are able to prove a local oracle inequality. We first state the assumptions on

the sequence of models (which will be roughly the same for the different procedures). We
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produce standard examples where these conditions are fulfilled, and prove then the local oracle
inequalities. It is interesting to notice that the associated functionals F7 and F” are different.
FL is very easy to understand since it is, up to a constant our standard example F introduced
(7). Surprisingly, FT is much less intuitive since it requires the introduction of the maximal
function (see (29)). We also investigate the behavior of an hybrid procedure, intermediate
between the 2 previous ones, which proves to be very efficient for the construction of confidence

intervals (see Picard, Tribouley 2000 ).

4.1 Assumptions on the sequence of models.

Our assumptions on the sequence of models will only take place with respect to its ability of

estimating the F; f. Let p > 1 be fixed.

Let us also fix a constant K > 4 and an increasing sequence of integers .J,,. These last 2

quantities will appear as tuning quantities for both procedures.

Moreover, we assume that there exist a sequence of estimates E]”, and sequence of classes of

distributions C; such that f(EA']” — E;f) dé is defined for any é € C;. In the sequel C;, will be :
e cither the class CP of all the Dirac masses of X, for any j and then f(E]” - FE;f) dé, =

E]”(.r) — E; f(z). This case will concern the local bandwidth selection.

e or the class C]W of measures 4;; with densities functions 2j/29]-_17k, k € associated to a
pair (¢, %) of father and mother wavelets in the way defined above : g;; = ¥; 1, for j >
0, g—1r = ¢ok. And then, the F;’s here are projection kernels on the space V;_y, for j > 1,
Ey = Ey, then [ E; f dé;, = 27/%3;1,. We put as definition, fEA]” dd;i = 2j/25jk, and then,
f(E]” — E;f) dé;r, = 21/%(3;1, — B;1). This case will obviously concern the thresholding.

In either case, we’ll assume that there exist some constants C'; and C% such that :
1. Moment Inequality of order p:
There exists C'y such that for all n > 1, for all 6 € C;, for all j, 0 < 5 < J,,
A - s ase < (2) (15
2. Concentration Inequality of order v:

There exist v > 0 and Cy such that for all n > 1, for all § € C;, for all 7, 0 < j < J,,

n

) 9112 logn v
(1 - an > BEE (B <o (1) (20)
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Remarks :

e The expectation and probability considered above, are taken when f is the true parameter.
Notice also, that if the condition (19) above is fulfilled for one p, it is automatically satisfied

for any p’ < p.

e It is worthwhile to notice that neither of the 2 conditions above implies the other one.

However, it is easy to verify that the following one implies both of them for any p > 1 :

There exist C'3, vg > 0, Ag > 0 such that forall n > 1, forall 6 € C;, forall 7, 0 < j < J,,
for all A > Ay,

. 22712 —\2
P, |/E] — E;f dé] > 7 < CSGXP{%}- (21)

%

4.1.1 Examples of Models where such conditions are satisfied

Let us take the 2 examples where F) is either a projection on V; or a convolutor with bandwidth
277, Tt is well known in the following basic models, using for EA]” the classical kernel estimator,

Bernstein and Rosenthal inequalities, that conditions (19) and (20) are satisfied:

1. White Noise Model, see section 2.2

dYT = f(t)dt + %th, teo,1] (22)

2. Equispaced regression model, with gaussian errors,
Yi=f(~)+e, i=1,...,n (23)
n
3. Density Model, see section 2.1

Y1,...,Y, independent, identically distributed, with density f (24)

But with more elaborate arguments one can also prove that they are satisfied for stationary
processes of spectral density f, or evolutionary spectra, Neumann and von Sachs (1997) , locally
stationary processes Mallat, Papanicolaou, Zhang, (1998), partially observed diffusion models

(Hoffmann, 1999 a,b,c ) multivariate extensions (¢ € [0, 1]) (Donoho, 1997, Neumann, 1998)
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4.2 Local bandwidth selection.

The following procedure has been introduced by Lepski (1991) , and can be found presented
in this local version in Lepski, Mammen and Spokoiny (1997). It is associated with a general

sequence of operators F;.

Let t,, still be (10%)1/2 and let us define:

1. The index j(:c) as the minimum of admissible j’s at the point z, where

j€A{0,...,J,} is admissible at the point z if

|E(2) — B (2)] < K27 Pt V5!, 575 <3 <57 <y

2. The following estimate:

fL('r) = Egn(z)(r)

The sequence .J,, will again be chosen in such a way that 277 < =% < 2/»+1 for some positive

constant 3.

Let M ={f, limsup|E;f(z)— f(z)]=0pae.}

J

Proposition 5 As soon, as the inequalities (19) and (20) are satisfied for some order p* and
v > p*3/2 and for the class CP, then fL satisfies for any 1 < p < p* the local oracle conditions
of order p of definition 4 on the space ¥V = M, associated with the sequence of operators F/; and

the functional

FE(f)(,2) == (4/K)sup 273 12| E; f(2) — f(2)].

323
Notice, in particular that the conditions of Proposition 3 for any 1 < p < p* are fulfilled, since
Bog,pee(M) C M. Moreover the result of Proposition (5) holds for any p > 1 if condition (21)

is fulfilled.

4.2.1 Proof of the Proposition 5.

First, let us remark, that, as mentioned above, because of the precise form of FL(f), we have
just to establish (13), as (14) is naturally fulfilled in this case. Let us recall, (see section 3.1.3)
Jr(z) = jf;L (z). Notice that j¥(z) is finite since f € M.

We’ll begin this proof by the following lemma.

Lemma 2 Under the conditions above,

PG > Gi)) < O
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Proof of the Lemma:
We remark that, by definition of j(z), when j(z) > 1, j(z) — 1 is not admissible, (when j(z) is
admissible) so there exists j/, j(z) — 1 < j/ < J, such that |E}”‘,(m) — B2 (z)] > Kt,27'/2.

i(z)-1
In addition, if j(z) — 1 > j*(z), we have:

IY N2
B f(2) = By F(@)] < 1B f(2) = F@)|+ 1By f(@) = F@)] < S4a2772

So, on the set j(z) > j(x), we have that there exists j/, j(z) — 1 < j' < J,,, with

~ ~ . -1 I( -1
|E7(z) — E;T-L(r)_l(xﬂ > Kt,2/'/?  and |Ejif(z) - E}(I)_lf(fcﬂ < 5tn2] /2

Hence, using (20)

P{j(a) > i)k = A | o
P {Uj;(x)5j<j'5Jn{|E?(9f) — BP(2)| > K,271% | By f(2) — By f(2)] < 51,27}

< X gren, PAIER@) = Bjef (@) = B} (2) + Ejf ()] > 51,2777}
< i pen PUEN) = Bpf(@)] > §.27 1} 4+ P{IEF(2) - Eif (2)] > 51,277}
<CJin™

Let us now investigate the 2 different cases:

Case 1: j(z) < J,. In this particular case, we can divide ,|f¥(z) — f(z)|? into 2 terms:

= Yocjicis(m) nlED(z) - f($)|p]{3(j€):j'}7
T2 2 )<]'an n| BN (x) = f(2)PI{j(x) = '}

1. To bound Tj let us remark that :

E%(2) — fla)lr < 377 (1B () - E (I)(x)lp
HET, () (2) = Bja (o) [ @) + | Bjs oy F () = F(@)]P)

On the set {j(z) = j'}, |EA7,(£C) — E]”*(r)(mﬂ < Kt,2in(@)/2,
For the second term, we’ll use (19) and the Cauchy-Schwartz inequality.

More precisely,

T <37 (Kt 23027 PLj(a) < jila)}+
Sogi<izo)(EEDPAP(G @) = )2+ [ Bjyw f(@) - F@)P)

< 371 (K1, 27020 4 (ZEE /2= (2) 12 P{(a) < ()} 4 | Ejy oy F(2) = F(2)]7)
< 3071 (K1, 20300/ 2)0 4 93200121, [ 1og 2)7 + | Bjaa) f(2) = f()]7)

For the last inequality, we used that 5 (z) < .J, < B‘;_w and p > 1.
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2. For the term T3, lemma 2 will be the key point. Using, in addition, Cauchy-Schwartz
inequality, (19) and the definition of j(z) we obtain:

Ty < Yinwncien 271 al BB (@) = By f@)[1/2P{j () = 5}/
+|E]f() F@)PP{j(a —a'}}

< 27’_1{[2' c@yri<ii<t, nlER@) = Epf (@)1 P{5(2) +1 < j(z) < T 1?2
+ Va1 <, (K2t /AP P{j(2 —a'}}

< 1 {2l r HCRI (K2, 40 SR )

This concludes this case since, for v > p3/2, the RHS of the last inequality is easily
bounded by Ct2 < C't?2in(=)p/2

Case 2: j*(z) > J,. This case is parallel to the previous one except that the term T3 has

disappeared. Again, we remark:

E5(2) = fo)P < 3071 (|BR () - B3 (o))
HES (2) = B, f(2)P + [E, f(z) = [(2)]7)

On the set {j(z) = j'}, |[E%(x) — EY (2)] < Kt,,27/2,

For the second term, we again use (19) and the Cauchy-Schwartz inequality.

Socica, wlEM@) = F@PIG@) =51} <3070 ((Ka27/2)r+
ZEP(P(j() = 1)/ + | Bg, f(2) = F()]F)

ZO<]’<JTL (

<377 ((Ken2 2y 4 (5220 4| By f () = J(@)]7)
< gp-1 ((Ktngﬂi(f)ﬂ)p + 20n(@P/2(t, [ log 2)P+
|Eg, f(2) = f(2)]P)

4.3 Thresholding Wavelet Coefficients.

Various descriptions of this procedure can be found, for instance in Donoho, Johnstone, Kerky-
acharian, Picard (1994), (1996), in different frameworks, (white noise, equispaced regression,
density). As above, we’ll consider ¢, = (10%)1/2, and fix J,, such that 2/~ < (@)5 < 27n
Notice that in the papers above generally we have g = 2.

The space X' is here [0,1], equipped with the Lebesgue measure, the E;’s here are the
projection kernels on the spaces V;_y (for j > 1, FEy = FE;) of a multiresolution analysis
generated by a pair of mother and father wavelets ¢ and . We assume that ¢ and % are

compactly supported and regular (at least bounded). We again assume the conditions (19) and
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(20) on the sequence of models, for this particular £;’s and recall the following thresholding

procedure:

FT@y=3" 3" Bud{IBixl > Ktn}gi—1x(),

0<5<Jn k
where g1, = 5, for j >0, gor = dox, Bix = Jo.1] Ej(z)gj—1x(z)dz
We’ll prove an analogue of Proposition 5. Here, the difficulty lies in the definition of F'(f)(j, z).
We have to be a little more careful and in particular, we introduce the following tools:
As usual, we denote by W; the 'innovation’ space defined by: V;;1 = V; ® W;. W; is spanned
by the collection {#;z, k € }.If fin a function of o, A;f =37, B;x9;, denotes its projection

on W;, and if x;i denotes the Haar wavelet, we define :
Ajf = Bk
k

Notice that A]f is in general a slightly modified version of A;f and enjoys the following nice

property : |A]f(:v)| = |ﬁjk|2j/2 when y;z(z) # 0.

Now, for g, locally integrable in , r > 0, let us define the following maximal function:

M@= s (187 [ |g|f")1/r (25)

{B,zeB}

The supremum is taken over all the balls B containing z, and |B| denotes the volume of the
ball. The function M,(g) obviously satisfies M,(g) > |g| a.e., and enjoys the following nice

properties.
Lemma 3 For any r > 0, there exist C,.,Cl, universal constants such that, for any j >0, k,

IA;f(z)] < C.M.(A;f)(z) Vzae. (26)

Aif@)] < CIMAA @), Vaae. (1)
There also exists, for any f locally integrable, for any ¢ > r, a constant Cy,,
[ <cy [ <c, [opr (28)

Remark :
The last inequality (28) states the equivalence of the , norm of f and M, (f). This result
is classical in Harmonic Analysis. Its proof can be found in Stein, E. (1993). The proof of (26)

and (27) is given in section 6.3, lemma 8. {
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Proposition 6 As soon, as the inequalities (19) and (20) are satisfied for some order p* and
~ > p* and for the class C]W, fT satisfies a local oracle inequality of order p on the space (M)
of functions bounded by M on [0, 1], associated with the sequence .J,, and the local functional
FT(f)(j,2) = (K/2C)277 37 M (A f) (2). (29)
325

For any choice of r < p, 1 < p < p*.

Remark :  Again, here the conditions of Proposition 3, are fulfilled for instance as soon as

a/B > 1/p, since in this case B,/ 00(M) C (M) O
4.3.1 Proof of the Proposition 6.

The proof will follow, with some differences the proof of Proposition 5.

First, here, there is a need for proving (16).
fsupjlzj |Epf(z) — f(z)|P1{z, i\(f,z) = du(z) < [I{z, i\(f z) j}[zj"zj |Aj f(z)[]Pdp(z)
< [ Kz, a(f,2) = 530 Me (A f) (@) [JPdp(z)
< [ Kz, ja(f,2) = 5}(2//2N)Pdu(z)
<IN Pu{z, (S, 2) = 5}

We have, as above to distinguish the 2 different cases: j'(z) < J, and j}(z) > J,. We'll

only investigate the first case. The second can easily be treated with the same trick as above.
In this particular case, we can divide E,|f7(z) — f(z)|? into 3 terms:
er =371 LI icicin(e) Dk (B {18k > Ktn} — Bix)gir(z)|?,

2 =3 Al Lis@rrgica DeBind {18l > Ko} = Bii)gju(2)l”
es =377 Ey, f(z) - f(z)]?

We’ll prove the following lemma.

Lemma 4 Under the conditions above, Yn > 1, V5, =1 < 57 < J,, Vk,

ol Bix — Birl*? < Cn7? (30)
P <|ﬁjk — Bkl 2 Klfn) < Cyn™ (31)
alBirI{|Bix] > Kt(n)} — Bjil” < C{th +n™""} for ' = v/2+ p/2. (32)

Proof of the Lemma:
1. (30) directly follows from condition (19), as well as (31) follows from (20).

2. For the inequality (32), we have to investigate separately the different cases |3,z >
2Kt,, |ﬁjk| < f(tn/Q, I(tn/Q < |ﬁjk| < 2Kt,.
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(a) In the first case, we write,

nl@ﬂﬂ"ﬂ@]“ > Krtn} - ﬁjk|p = n|ﬁjk - ﬁ]k|p1{|ﬁ]k| > Kt }‘I' |ﬁ]k|pp{|ﬁ]k| < Kty }
< nlﬁjk - ﬁ]klp + |ﬁ]k|pp{|ﬁjk - ﬁ]k| > Kty }
< C{n7P?2 4=}

Here, we used (30), (31) and the fact that f bounded implies that its wavelets

coeflicients are also bounded for 57 > 0.

(b) In the second case, using Cauchy-Schwarz inequality, we have,

al B {1Bin] > Kt} = Bisl?
< nlBik = Binl PV 2P{ Bk — Bkl > Kt /23?4 (K1,/2)P
< Cn~ N2 4 (Kt /2)P

(c) The third case uses the arguments of both previous cases:
alBid {1Bj] > Ktn} = il < C{n=P/% + (Kt,/2)"}

This ends the proof of the lemma. |

To bound e; and ey, we’ll use the following triangular inequality, true for p > 1:
(B[ X))V < S (BIX7)Y?P (33)
I I

1. To bound ey we use (33), (32), the fact that as g is compactly supported only a finite
number of £ (N say) at each level j are such that g;;(z) # 0:

er < 3p_1[2—1§j§]n (=) >l n|(ﬁ]k1{|ﬁ]k| > Ktn} — ﬁ]k)gjk( )lp}l/p]p
<3 g jcix o) ok Hgjn(w) # 03(20P12C{1 + L 3)1/rpp
<3N agign oy NOZ Pt + S}
< C2in@Ip/20yp nlv’}

2. To bound e5, let us remark that we can write:

ST ST BBl > Ktn} — Bin)gin(a)

In(@)H1<i<In K X
= (Ejo)f(z) = f(z) = E5, f(2) + f(2) {|Bjk] < Ktn}
+ Yy sr<ican 2or(Bik = Bi) {13k > Kt} I{|Bjk] < Kt /2}gjn(x)
We are allowed to put here the indicator function I{|3;1] < Kt,/2} because we are
dealing with j’s larger than j)(z). Because F'(f)(j,z) is non decreasing in j, we have
for j > jx(z), F(f)(j,z) < Kt,/2C", hence M,(A;f) < 2//2Kt,/2C". Therefore, using
lemma (3), (27), we get that necessarily |3;z| < Kt,/2 if g;x(z) # 0. Now it remains to
write:
e2 < CH|Eju@)f(x) = f(@)] +|Eg, f(z) - f(=)P+
{Zj;j(z)-klﬁj'SJn Sk(ElBik = Bk P{IBjx — Bik| > Ktn/2})V/22112| g|| oI {gin(z) # O}V}
< C{|Ejyoy f(2) = F(@) P + |Eg, f(2) = (@) + =7}
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4.4 Local bandwidth selection using wavelet coefficients.

We’ll also consider the following procedure, which can be considered as a hybrid version between
thresholding and Lepski’s procedure.
Let us define:

1. The index jﬁ(m) as the minimum of f-admissible j’s at the point =, where
j€40,...,J,} is f-admissible at the point z if

|Binxn(z)| < K272, Yk, §' § <5 <,

2. The following estimate:
]EH(JC) = E;ﬁ(z)(m)

The sequence .J,, is again chosen (for sake of simplicity) in such a way that 27» < -8 < 2/n%1,
Notice that fH looks very much like fT, except that somehow, it "fills the holes” : Let us say
that (7, %) is touched by z if g;x(z) # 0, then if j is such that |ﬁjk| > Kt, and is touched
by z, and if for instance |B]‘—1,k'| < Kt,, for all ¥’ such that (j — 1,%’) is touched by z, then
fH restores all the |Bj—1,k’| < Kt, which were killed in the fT expansion. This estimator has
similar minimax and adaptation properties as fT, but proves to be strictly more efficient for
the construction of confidence intervals (see Picard, Tribouley 2000). We also can prove the

following proposition:

Proposition 7 As soon, as the inequalities (19) and (20) are satisfied for some order p* and
v > p* and for the class C" fH satisfies a local oracle inequality of order p on the space (M)
of functions bounded by M on [0, 1], associated to the sequence .J,, and the local functional
FR(F) (G, 2) = (K /202792 37 A f (o).
'3

For any choice of r < p, 1 < p < p*.
4.4.1 Proof of the Proposition 7

The proof combines the arguments of thresholding and bandwidth selection. We have, as above
to distinguish the 2 different cases: j¥(z) < .J, and j}(z) > J,. We'll only investigate the first

case. The following lemma summarizes the essential properties of fH

Lemma 5 Under the conditions above,

(i) P{j(2) > jilo)} <%
(@) Wl EP(a) — Eif@)Pr <O (B), V21, Vo e X, Vj, 0< 5 <,
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Proof of the Lemma:
(i)- We remark that, by definition of 7°(z), when 7%(z) > 1, j* = j%(z) — 1 is not F-admissible,
(when j#(z) is, then there exists k, / gir(z) #0/ |Bj*k| > Kt,. If in addition, we suppose
J* > ji(z), then : |B;«x] < Kt, /2. Hence,
P{jP(z) > jr(x)} =

P{Uj:;(z)gjgjn by [ gyen(@)zol|Bivk — Bjrk| > Ktn/Q}

< Yy P{UBjk — Binl > Kt /2}

<CJ,n"

(ii)- Using (33), we easily get

. . , 1/2p]2%P
n|E;L('r) - E]f('r)|2p < ZOS]’S] Ek, [ 9% (x)#0 ( nlﬁj'k - ﬁj’k|2p2]p”g”oo) ]
<O
|

In the case j:(z) < J,, we can divide ,,|f7(z) — f(z)|? into 2 terms:
T = ZOSJ'IS]':;(J') n|E;L'('?) - f(.r)lpj{jﬁ(?) =3}
Ty = Ypwngicn oEp@) = f@)PH{7%(=) =)
To bound Tj let us again remark that :

En(2) = f(a)l < 377 (|Ep(e) — B,
il

X n(r)(x)lp
HEL () (@) = Bjao f@)F + | Ejy) f @) = f(@)]?)

and on the set {j°(z) = j'},
|E5(2) = s oy (@) = 1 X j<icin) 2n, / gyon ()20 Bikgin(2)]
< CKt,23()/2,
At this stage, we can bound T} and T5 just as in the proof of proposition 5.

To end our proof, we need establishing (16).

[supps; |Epf(2) = f(@)PIH{z, jx(f,2) = jYdp(z) < [ Ha, jx(f2) = s 18 f (@) Pdp(e)
< gl @, r(f,2) = G5, 18 f (@) |]Pdp(z)
< [ K, ja(f,2) = 532072\ Pdp(x)
< NPz, a(f,x) = 5}

5 Comparison among various adaptive procedures.

We are now able to start a comparison between the methods investigated above. Let us restrict
to the case where F; are the projection kernels onto the spaces V; of a multiresolution analysis
generated by a pair of mother and father wavelets ¢ and ¢ having the properties mentioned

above. To simplify, let us also take the most common stopping sequence .J,, corresponding to
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the case § = 2. Using the result of propositions 3, 5, 6 and 7 we know that the respective
maxisets MS(fn,p, «)(T') associated to the rate 27 of fL (resp. fT, fH) contains the set

Ba/?,p,oo(M) n W(FL) (p7 Q) (M)
resp. BQ/ZP’OO(M) NW(FT)(p, q) (M),
resp. By p o (M) N W(FH)(p, q)(M)

where ¢ = p(1 — «) and if we omit the constants,

FE(f) (G, 2) = supyrs; 27912 | Ej f(2) = f(2)]
FT(f) (G, a) = 279125 s My (A £) ()
FR(f)(G,2) = 2792 555 1A f ()]

It is thus natural to ask the following questions:

]

1. How far from equality is the inclusion 7
2. Can the spaces mentioned above be compared ?
We’ll precisely give the following answers :

1. Because of Theorem 7 in Cohen et al (1999) (see also the second example in §2), we
have equality between the spaces B, /3, 0o N W*(p, q) and the maxiset associated to the
thresholding procedure M.S( A};,p, @), in the sense described in (1).

2. If we recall,
F2(f)(,2) = 27217 £ (2)],

we have already that W*(p, ¢) = W(F?)(p, q)

3. A consequence of the forthcoming theorem 1 is that
W(ET)(p,q) = W(F?) (p,q) = W*(p, ).

4. If we introduce the following auxiliary function, and refer to the forthcoming theorem 1

for the definition of T,
FA ()G, 2) = 2718 f ()],

we observe that

F3(f)(G ) < 273{|Eja f = fl+ B f - fI}
< FX(f)(5,2),
FU(f)(G,z) < T(F(f)(j,2))

We deduce, using the first inequality:
W(F")(p,q) C W(F®)(p,q),
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from the second one:

W(F?)(p,q) C W(T(F"))(p, q),

Now, using theorem 1, and theorem 3
WI(F")(p, q) = W(T(F))(p, q), W(F®)(p, ) = W(F?)(p, )
Hence W(F)(p, ) = W(F?)(p, ) = W(F")(p, 9) = W*(p, ).

5. Now, if we introduce
FA(f) (G, 2) = 2792 M (A ) (=),

using the forthcoming theorem 2:
W(EY) (p,q) = W(E?)(p, q),
using theorem 1:
W) (p,q) = W(T(F*))(p, 9) = W(ET) (p, 0),
Hence W(F")(p,q) = W(F")(p,q) = W(F™)(p,q) = W*(p, 9).

6. As a consequence of the above remarks, we easily state that as far as maxisets are con-
cerned, ff and ffl are at least as good as fAnT Whether they are strictly better is an

opened question, as well as the comparison between them.

6 Comparison of weak besov bodies associated to different func-
tionals.

6.1 Weak Besov bodies associated to max or sum functionals
Let X be a measured space, with a o—finite measure . Let 0 < p < oo, and, let us define

on X A the measure v, = (3¢ 21(r/2)§.) ® p. Let G(j,2) a measurable function defined on
X X. Let us define :

G*(j, ) = Sup;i»; |G (', z)].
and

Theorem 1 Let 0 < g < p, then

W(F)(p,q) = W) (p,q) = W(T(I))(p, q)-
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Because of the definition of W(F')(p, q) (see (18), this theorem is a consequence of the following

lemma:

Lemma 6 For 0 < ¢ < p < oo,

GE 1o)== G € ) —=TG)e 0.

Proof of the lemma 6:

Since |G| < G* < T(G), we only have to prove :
GE 4ely) = T(G) € 4o(vp).
In fact let us first prove :

V0<q<p, 3C,<oo, suchthat VG, [IT@I,, <ClGI,),

o Let us observe that

IGI® (. = T30 272G 7, and

HT(G)qu(yp) = ijo 2]’(?-!1)/2” Zj'zj 21"/2|G(j', ')qu(u)
e Hence for ¢ < 1:

1Ty < Tizo 2070 Sy 221G I
= Zj'zo 27 q/2HG(j/’ ')qu(ﬂ) Z]<]'2 i(p—q)/2
= o X0 271G I
=G,

e For ¢ > 1, we remark that HGHq )y <00 = 290124\ G (4, )| ) = € €1g( ), hence:

1@, SZjZOQj(p DS s 2]//QHF( I o)
() !
=502/ 722 __z)éj')q
=2 ix0(Xjr>; 270 _])(2q 2)62’)q

— 2 _1 o oW, = : 10— ;
As a >0, ;2 €0 = (€. %b.);, where b; = 1;<027*7. Now, using
[le.xb.llg < 16-[[le.lq,

we have

1@, < elleill, = ellFI7 (34)
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We just need to prove that (34), can be extended to the associated weak spaces. It is a con-

sequence of the following interpolation theorem, whose proof is given for sake of completeness.

Proposition 8 Let (Y,v) be a measured space, 0 < p; < ¢ < pz, T defined on ,, + ,, with
values in the space of measurable functions , verifying, |T(f1 + f2)| < |T(f1)|+|T(f2)|a.e..
We suppose that for all i € {1,2} there exists a constant only depending on T; and p;, denoted
by || T||p;, such that 0 < ||T],; < oo and

Vi€ n®), ITON 00 SIT A, 0
Then

[T 50y < C @122 ¢ 1T Mlpis ITM]p2) 11 00

Proof of Proposition 8:

1. Let fe ,0(Y,v), 0<p; <qg<ps, 0<X<oo. We have the following inequalities :

A
/Y|f|p21|f|§/\d.1/§/Y(|f|/\A)p2d.y:/0 paz? (| f| > z)de

A 1 (1] ! P2
S/ p2$p2— 9,00 dr = ”f”q OO/\p2—q.
0 T P2 —q B
A o0
/Y | F1P 1) gpady = / preP (| f] > Nda + /A pie? (| f] > 7)da

q 00 q
S ”f” g,00 Apl _I_/ p1$p1_1 HfH g,00 d$: q Hqu Apl_q.
A A x q—n o

2. For a fixed 0 < A < o0, let us decompose f € , ., in the following way :

F= Mg+ Mg = H+ fo

Using the previous inequalities we have :

[inprar < g, s [ < P, e,
Y 9—n Y P2 —4q

So

AT > 20 S v (T > 0+ (T () > 3 < (e )™y () )™

1711, )" I71:)" g P 1 o)’
< (152) i+ (F52) Al < i+ Ly (=)
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6.2 Weak Besov bodies associated with maximal functions

Let X be one of the spaces @ or [0,1]% and p the Lebesgue measure. Let 0 < r < co. For all
measurable function on X', we recall that, M, (g)(z) = sup(p ,epcx) (I|B]=" [5 |g|7")1/r where B
denotes a ball of X.

For F(j,z) = Fj(z) a non negative functional defined on  x X, Let us extend the definition :
M, (F)(j, z) = M (F;)(2).
Theorem 2 For 0 < r < ¢ < p, we have, W(F)(p, q) = W(M,.(F))(p, q).
As above, this is a consequence of the following lemma :

Lemma 7 Let F(j,z) be a measurable function defined on  x X. Then, with the previous
notations :

VO<r<q; Fe 0ty <= M(F)€ ;0.

Proof of the lemma : It is classical (see Stein 1993), theorem 1, p 13, that for any measurable

function g on X, |g(z)| < Mi(g)(z)a.e. and Vg > 1, 3C,;, depending only on X' ,such that
(] Mty < Cy( [ loldm?.
One can obviously induce, as M,(g) = (M1(|g|’"))% , that VO < r < ¢ < o0,
([ Mooy < ([ laldwt < CT([ Mo (o) ).

There is an obvious modification for ¢ = oo

Let now 0 < r < ¢ < 00. As M, (F)(j,z) > |F(j, s)|, vp—almost everywhere we have just to

prove the lemma in one direction : [|[M,(F)|| , ., < CIIF]| »,) But,
9,0 \¥p qoo p
: g
IV (P, = S 2ODNMAF ) < CF 20D E P = IR,
e ]E r

We can conclude using proposition 8.
6.3 Weak bodies associated with wavelet coefficients

Let again X' be one of the spaces ¢ or [0,1]? and p the Lebesgue measure. Let 0 < p < oo,
and, let us define on  x A’ the measure v, = (Zje 2j(p/2)5j) ® p. Let a compactly supported
wavelet basis 1; ;. We associate the corresponding Haar wavelet x;x(z) = 2]51[071](2]'36 — k). For

fe ,(X), let the following wavelet decomposition :
F=>20 " Ntk
ik

31



Let us define
> XNiwtik(z) = A;(f) ().
k

Do Xirxin(z) = Ai(f)(2).
k

Let us associate the two following functionals :

. _1 N /-
Fr(Gy2) = 2728 (N)(2); Fy(d,2) = Aj(f) (@)
then we have the following theorem :

Theorem 3 V0 < r < ¢,
W(F)(p, q) = W(F)(p, q)-

this is the consequence of theorem 2 and the following lemma :
Lemma 8 With the previous notations
8@ < Gl N 7 Mo(A)(2), Vo aue.
18 (@)] < [$]oNEYIM, (A)) (@) Vo ace.

Let us recall
k k+ N
207 21

E k41
20" 9i

]

Proof of the lemma : The following remarks are obvious, due to a finite dimensional

supp(Vjx) = [ 1; supp(x;r) =1

argument : Remarks :

o V0 < r <o0,3C,, C] such that:

o (/
0.N]

)

1

|§l:a,¢(u—1)|fdu) g/[ ]|§l:a,¢(u—z)|dugc; (/[ ]|§l:al¢(u—z)rdu)

) )

e Moreover :Vk € , Vje

1

(21 Zaly]l Tdu) < QJ/k o ZOAH&]’ u)|du
23’

[ N

S |-

<G ( £ k+N|Z i (u |du)

%

Let us now prove :
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Ve, |Aj(2)] < CLlBlleN 7 M, (A)(2) :

Let z € [2%, %1]

—_— J J / ;
B = [Nt = 22 sal = 28 [ 8gusal < 2ol [, 132 Nie0nd
27

27"
But using the preceding remarks this can be bounded by :

: 1
12 . ! 1
L9l (ﬁ J IR SR IRCY du) < CLlloo N M (85) ().
27 27 l

Ve, [A;(@)] < (|9l NGVIM, (A)(2) :

k k

, J
Aj@) =1 > Nwtiw@]<2Z9le D, Al

k'=k—N+1 k'=k-N+1

S e

k
szénwnooN“‘;“( 2. |AJ-,,;|T)

kK =kE-—N+1
But let us observe that :

. 1 L %
— 27 , " _1l,1 r
M (Aj)(z) = (ﬁ /[k_NH k_+i]|ZAj,1Xj,l| du) =N7r2> ( Yo Pl ) :
27 2] { k'=k—N+1

We are very grateful to the very positive and helpful comments of two referees and the

Case-Editor.
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