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Abstract

In [?], using a typically probabilistic substitution in the Boltzmann equation, we
extend Tanaka’s probabilistic interpretation [?] to much more general spatially homo-
geneous Boltzmann equations, i.e. homogeneous Boltzmann equations without cutoff
and for non Maxwell molecules.

In this paper we show how this interpretation allows us to build some approximating
cutoff interacting particle systems, and to derive some Monte-Carlo algorithms for the
simulation of solutions of the Boltzmann equation.
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1 Introduction and general setting

The Boltzmann equation we consider describes the evolution of the density f(t, v) of par-
ticles with velocity v ∈ IR2 at time t in a rarefied homogeneous gas:

∂f

∂t
= Q(f, f) (1.1)

where Q is a quadratic collision kernel preserving momentum and kinetic energy, of the
form

Q(f, f)(t, v) =
∫
v∗∈IR2

∫ π

θ=−π

(
f(t, v′)f(t, v′∗)− f(t, v)f(t, v∗)

)
B(|v − v∗|, θ)dθdv∗ (1.2)
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v′ = v +A(θ)(v − v∗) ; v′∗ = v∗ −A(θ)(v − v∗) (1.3)

and

A(θ) =
1
2

(
cos θ − 1 − sin θ

sin θ cos θ − 1

)
(1.4)

Notice that for each θ ∈ [−π, π] \ {0},

|A(θ)| ≤ K|θ| (1.5)

The cross-section B is a positive function, even in the θ-variable. If the molecules in the
gas interact according to an inverse power law in 1/rs with s ≥ 2, then B(z, θ) = z

s−5
s−1d(|θ|)

where d ∈ L∞loc(]0, π]) and d(θ) ∼ K(s)θ−
s+1
s−1 when θ goes to zero, for some K(s) > 0.

Physically, this explosion comes from the accumulation of grazing collisions.

In this general (spatially homogeneous) setting, the Boltzmann equation is very difficult to
study. A large literature deals with the non physical equation with angular cutoff, namely
under the assumption

∫ π
0 B(z, θ)dθ <∞. More recently, the case of Maxwell molecules, for

which the cross section B(z, θ) = β(θ) only depends on θ, has been much studied without
the cutoff assumption. In the Maxwell context, Tanaka, [?] was considering the case where∫ π
0 θβ(θ)dθ <∞, and Desvillettes, [?], Desvillettes, Graham, Méléard, [?] and Fournier, [?]

have worked under the general physical assumption
∫ π
0 θ

2β(θ)dθ < +∞.

The case in which B depends on z is really harder and there is just a few results on it. We
can just mention the paper of Alexandre-Desvillettes-Villani-Wennberg [?] and Fournier-
Méléard [?] in which a natural probabilistic approach is proposed to study the case of non
Maxwell molecules under the condition

∫ π
0 θB(z, θ)dθ <∞, when B(z, θ) = ψ(z)β(θ) where

ψ is positive and bounded and locally Lipschitz continuous. One proves in this case the
existence of a measure-solution of the equation for any initial probability data with a sec-
ond order moment. Moreover, we deduce of this probabilistic interpretation a stochastic
particle method to approximate this solution, based on a Monte-Carlo approach.

In [?], another model is considered for which
∫ π
0 θ

2B(z, θ)dθ < ∞. Tanaka’s probabilistic
interpretation [?], who was dealing with Maxwell molecules, is extended to this case. Using a
tricky transformation of the cross-section, a solution of the equation is related to the solution
Vt of a Poisson-driven stochastic differential equation. That thus implies the existence of
measure-valued solutions for the nonlinear equation.
Our aim in this paper is to build Monte-Carlo approximations of these solutions and to
describe the corresponding algorithm. We will prove an extended law of large numbers,
showing that the empirical probability measure associated with an interacting stochastic
particle system tends to a solution of (??), in a certain sense.
We will see that the tricky transformation introduced in [?] will have a key rule in our
study.
In the last part, we study numerically the behaviour of the empirical moment of order
4 associated with our particle system. We obtain numerical results which “confirm” our
theoritical results, and which show that a central limit theorem might be associated with
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our extended law of large numbers.

The simulation algorithm has to be compared with that of [?]. The main interest of
the present algorithm is that it allows to consider the case where B(z, θ) satisfies only∫
θ2B(z, θ)dθ < ∞: in [?], it was assumed that B(z, θ) was of the form ψ(z)β(θ), with∫
θβ(θ)dθ <∞. We thus get rid of two assumptions. Furthermore, the present algorithm is

slightly more fast, because there were many fictive collisions in [?]. But the main objection,
and this is a real limitation, is the following: we will see that the explicit computation (or
numerical approximation) of the inverse of a distribution function associated with B(z, θ)
has to be done.

Notation 1.1 The terminal time T > 0 is arbitrarily fixed.
IDT will denote the Skorohod space ID([0, T ], IR2) of càdlàg functions from [0, T ] into IR2.
The space IDT endowed with the Skorohod topology is a Polish space.
P(IDT ) will denote the space of probability measures on IDT and P2(IDT ) will be the subset
of probability measures with a second order moment : Q belongs to P2(IDT ) if∫

x∈IDT

sup
[0,T ]

|x(t)|2Q(dx) <∞ (1.6)

K will denote a real positive constant of which the value may change from line to line.

In order to prove the existence of measure-solutions, it is assumed in [?] that

Assumption (S) : for each x ∈ IR+, B(x, θ) is an even strictly positive function
on [−π, π]/{0} satisfying

for all x ∈ IR+,

∫ π

−π
B(x, θ)dθ = ∞ (1.7)

and
sup
x∈IR+

∫ π

−π
θ2B(x, θ)dθ <∞ (1.8)

For X ∈ IR2, we will denote by B(X, θ) the quantity B(|X|, θ).

Equation (??) has to be understood in a weak sense, i.e. f is a solution of the equation if
for each bounded test function φ,

∂

∂t
< f, φ >=< Q(f, f), φ > (1.9)

where < ., . > denotes the duality bracket between L1 and L∞ functions. A standard
integration by parts would give that f satisfies for each bounded φ

∂

∂t

∫
IR2

f(t, v)φ(v)dv =
∫
IR2×IR2

∫ π

−π
(φ(v′)−φ(v))B(v−v∗, θ)dθf(t, v)dvf(t, v∗)dv∗ (1.10)

But under (S), the form of v′ and the fact that
∫
|θ|B(x, θ) might be infinite necessitates

to consider a compensated form of the collision term, which may explode in the previous
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form. This remark leads us to the following definition of solutions of (??).

Assume (S). First of all, we define, for q ∈ P2(IR2), each φ ∈ C2
b (IR

2),

Lqφ(v) =
∫
IR2

∫ π

−π

(
φ(v +A(θ)(v − v∗))− φ(v)−A(θ)(v − v∗).∇φ(v)

)
B(v − v∗, θ)dθq(dv∗)

−
∫
IR2

(v − v∗).∇φ(v)b(v − v∗)q(dv∗) (1.11)

with for each X ∈ IR2,

b(X) =
1
2

∫ π

−π
B(X, θ)(1− cos θ)dθ. (1.12)

This kernel is well defined thanks to (??) and (??).

Definition 1.2 Assume (S). Consider Q0 a probability measure on IR2. We say that a
probability measure family {Qt}t∈[0,T ] is a measure-solution of the Boltzmann equation (??)
with initial data Q0 if for each φ ∈ C2

b (IR
2), all t ∈ [0, T ],

〈φ,Qt〉 = 〈φ,Q0〉+
∫ t

0
〈LQsφ(v), Qs(dv)〉 ds, (1.13)

The probabilitistic approach consists in considering (??) as the evolution equation of the
flow of time-marginals of a Markov process, solution of the following nonlinear martingale
problem.

Definition 1.3 Let B be a cross-section satisfying (S) and let Q0 in P2(IR2). We say that
Q ∈ P2(IDT ) solves the nonlinear martingale problem (MP) starting at Q0 if for X the
canonical process under Q, the law of X0 is Q0 and for any φ ∈ C2

b (IR
2), any t ∈ [0, T ],

φ(Xt)− φ(X0)−
∫ t

0
LQsφ(Xs)ds (1.14)

is a square-integrable martingale. Here, the nonlinearity appears through Qs which denotes
the law of Xs under Q.

Remark 1.4 Taking expectations in (??), we observe that if Q is a solution of (MP), then
its marginal flow (Qt)t∈[0,T ] is a measure-solution of the Boltzmann equation, in the sense
of Definition ??.

2 Transformation of the Boltzmann equation and main re-
sults.

This whole work is based on the following substitution in Lq.

Notation 2.1 For each X ∈ IR2, we consider the function hX defined on [−π, π]/{0} by

hX(θ) =
∫ π

θ
B(X,ϕ)dϕ if θ > 0 ; hX(θ) = −

∫ θ

−π
B(X,ϕ)dϕ if θ < 0 (2.1)
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Thanks to (S), it is clear that for each X, hX(θ) is strictly decreasing from 0 to −∞ between
θ = −π and θ = 0−, and from +∞ to 0 between θ = 0+ and θ = π. We thus can set, for
each X ∈ IR2 and each z ∈ IR∗,

g(X, z) = h−1
X (z), i.e. hX(g(X, z)) = z (2.2)

Notice that for each X, z, the derivative
∂

∂z
g(X, z) = −1/B(X, g(X, z)) < 0, thanks to (S).

The function g(X, z) is thus strictly decreasing from 0 to −π between −∞ and 0−, and
from π to 0 between 0+ and +∞.

Notice also that g(X, .) is odd and depends only on |X|.

Finally we remark that (??) can be written as

b(X) =
∫
IR∗(1− cos g(X, z))dz (2.3)

that (??) becomes

sup
X∈IR2

∫
IR∗ g

2(X, z)dz < +∞ (2.4)

We introduce again some notations.

Notation 2.2 For X ∈ IR2 and z ∈ IR∗, we set

γ(X, z) = A(g(X, z)).X : IR2 × IR∗ 7→ IR2 (2.5)

δ(X) = b(X)X : IR2 7→ IR2. (2.6)

Proposition 2.3 Assume (S). Then for each q ∈ P2(IR2), each φ ∈ C2
b (IR

2),

Lqφ(v) =
∫
IR2

∫
z∈IR∗

(
φ(v + γ(v − v∗, z))− φ(v)− γ(v − v∗, z).∇φ(v)

)
dzq(dv∗)

−
∫
IR2

δ(v − v∗).∇φ(v)q(dv∗) (2.7)

Proof. It suffices to use the substitution

θ = g(v − v∗, z) ; z = hv−v∗(θ) ; dz = −B(v − v∗, θ)dθ (2.8)

in (??) and (??) 4

Remark 2.4 We now give an idea of the probabilistic approach we will use, following the
main ideas of Tanaka, [?], who was dealing with a much more simple case of Maxwell
molecules: B(X, θ) = β(θ) and

∫ π
0 θβ(θ)dθ < +∞. In this case, the jump measure appear-

ing in the analogous of (??) is β(θ)dθq(dv∗) independent of v. The main interest of the
transformation described above is to transform the jump measure B(v− v∗, θ)dθq(dv∗) in a
measure dzq(dv∗) independent of v. That will allow us to have a probabilistic interpretation
in terms of Poisson measure.
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Let us consider two probability spaces : the first one is the abstract space
(Ω,F , {Ft}t∈[0,T ], P ) and the second one is the auxiliary space ([0, 1],B([0, 1]), dα) intro-
duced to model the nonlinearity by the Skorohod representation theorem. In order to
avoid any confusion, the processes on ([0, 1],B([0, 1]), dα) will be called α-processes, the
expectation under dα will be denoted by Eα, and the laws Lα.

Notation 2.5 We will denote by L2
T the space of IDT -valued processes Y such that

E

(
sup
t∈[0,T ]

|Yt|2
)
< +∞ (2.9)

and by L2
T -α the space of α-processes W such that

Eα

(
sup
t∈[0,T ]

|Wt|2
)
< +∞ (2.10)

Definition 2.6 Assume (S). We will say that (V,W,N, V0) is a solution of (SDE) if
(i) (Vt) is an adapted L2

T -process on Ω,
(ii) (Wt) is a L2

T -α-process on [0, 1],
(iii) N(ω, dt, dα, dz) is a Poisson measure on [0, T ]× [0, 1]× IR∗ with intensity measure

m(dt, dα, dz) = dtdαdz (2.11)

(iv) V0 is a square integrable variable independent of N ,
(v) The laws of V and W on their respective probability spaces are the same, i.e. L(V ) =
Lα(W ),
(vi) The following S.D.E. is satisfied :

Vt = V0+
∫ t

0

∫ 1

0

∫
IR∗ γ(Vs−−Ws−(α), z)Ñ(ds, dα, dz)−

∫ t

0

∫ 1

0
δ(Vs−−Ws−(α))dαds (2.12)

where Ñ denotes the compensated Poisson point process associated with N .

The following remark shows the connection between (SDE) and the Boltzmann equation
(??).

Remark 2.7 If (V,W,N, V0) is a solution of (SDE), one easily proves by using the Itô
formula, that L(V ) = Lα(W ) is a solution of the martingale problem (??) with initial law
Q0 = L(V0), and thus {L(Vs)}s∈[0,T ] is a measure-solution of (??) with initial data Q0.

Let us now state an hypothesis, which, combined with (S), will be sufficient for proving
the existence of a solution to (SDE) (and thus a solution to (MP ), and hence a measure-
solution to (??)).

Assumption (MS) : (i) There exists a constant K ∈ IR+ such that for all
X ∈ IR2, ∫

IR∗ γ
4(X, z)dz ≤ K(1 + |X|4) (2.13)

(ii) There exists a function S from IR2 × IR2 → IR+, locally bounded, such that
for each X,Y ∈ IR2,

|δ(X)− δ(Y )|2 +
∫
IR∗ (γ(X, z)− γ(Y, z))2 dz ≤ |X − Y |2S2(X,Y ) (2.14)

(iii) The initial data Q0 admits a moment of order 4.
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Then it is proved in [?] that the following result holds.

Theorem 2.8 Assume hypotheses (S) and (MS). Then
1) The martingale problem (MP ) with initial data Q0 admits a solution Q ∈ P2(IDT ).
2) Let Q be any solution of (MP ). Let W be any α-process with law Q. On an enlarged
probability space from the canonical space (IDT ,DT , Q) there exist a Poisson measure N
with intensity m and an independent square integrable variable V0 with law Q0 such that
(X,W,N, V0) is solution of (SDE), where X is the canonical process.

Remark 2.9 Let us remark that there is no assumption on Q0, except to have a forth
order moment, and that allows us to consider degenerate initial data, as Dirac measures.
Theorem ?? exhibits in particular a measure-solution to the Boltzmann equation (??) for
every initial data Q0 ∈ P4(IR2).

Remark 2.10 Assume that the cross-section is of the form B(X, θ) = ψ(X)/|θ|α, with ψ
positive and α ∈ [1, 3[.
Then (S) and (MS) are satisfied if ψ is strictly positive, bounded, and locally lipschitz
continuous on IR2.

Proof. Observing that when α = 1, g(X, z) = sign(z)e−|z|/ψ(X), and when α > 1,

g(X, z) = sign(z)
(

πα−1ψ(X)
(α−1)|z|πα−1+ψ(X)

) 1
α−1 , the remark can be proved by using simple com-

putations. 4

3 The stochastic particle approximation

In this part, we introduce some stochastic particle systems and prove the convergence of
the empirical measures of the system to a solution of the nonlinear martingale problem
(MP ). This will be the theoretical basis of the Monte-Carlo algorithm given in the next
section.
To define the particle system, we firstly need to “cutoff” the cross-section, in order to obtain
a finite number of collisions during each finite time-interval. Namely, for each fixed real
number l, we consider

Bl(x, θ) = B(x, θ)1|θ|≥ 1
l
.

Now, we consider transformations as described in Section 2. The real number l is fixed.

Notation 3.1 For each X ∈ IR2, we define the function hlX on [−π, π]/{0} by

hlX(θ) =
∫ π

θ
Bl(X,ϕ)dϕ =

∫ π

1
l
∨θ
B(X,ϕ)dϕ if θ > 0 ; (3.1)

hlX(θ) = −
∫ θ

−π
Bl(X,ϕ)dϕ = −

∫ (− 1
l
)∧θ

−π
B(X,ϕ)dϕ if θ < 0 (3.2)

Thanks to (S), it is clear that for each X, hlX(θ) is strictly decreasing from 0 to −Al(X)
between θ = −π and θ = −1

l , and from Al(X) to 0 between θ = 1
l and θ = π, where

Al(X) =
∫ π

1
l

B(X,ϕ)dϕ.
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We thus can set, for each X ∈ IR2 and each z ∈ [−Al(X), 0[∪]0, Al(X)],

gl(X, z) = (hlX)−1(z), i.e. hlX(gl(X, z)) = z (3.3)

Notice that for each X ∈ IR2, all |θ| > 1
l ,

hlX(θ) = hX(θ) (3.4)

and that for all 0 < |z| < Al(X),

gl(X, z) = g(X, z). (3.5)

We extend gl(X, z) by 0 for |z| ≥ Al(X).

Notation 3.2 As before we denote

γl(X, z) = A(gl(X, z)).X (3.6)
δl(X) = bl(X)X (3.7)

where
bl(X) =

∫
[−Al(X),0[∪]0,Al(X)]

(1− cos gl(X, z))dz.

Let us remark that for all l, X, z ∈ IR2 × IR∗,

|γl(X, z)| ≤ K|X||gl(X, z)|∫
IR∗

|γl(X, z)|2dz ≤ K|X|2
∫ π

−π
θ2B(X, θ)dθ ≤ K|X|2. (3.8)

Assumption (SA) : We will assume that

sup
X∈IR2

∫ π

1
l

B(X, θ)dθ = Al < +∞ ; sup
X∈IR2

∫ 1
l

0
θ2B(X, θ)dθ 7→ 0 for l 7→ ∞. (3.9)

For example, if B(X, θ) = ψ(X)β(θ), this assumption is satisfied as soon as the function
ψ is bounded. Let us remark that since A(0) = 0, then A(gl(X, z)) is well defined for all
z ∈ [−Al, 0[∪]0, Al], and then also γl(X, z).

Let us now define our approximating systems. The natural interpretation of the nonlinearity
in (??) leads to a simple mean field interacting system but a physical interpretation of the
equation leads also naturally to a binary mean field interacting particle system. In both
cases, these n-particle systems are pure-jump Markov processes with values in (IR2)n and
with generators defined for φ ∈ Cb((IR2)n) by

1
n

∑
1≤i,j≤n

∫
[−Al,0[∪]0,Al]

(φ(vn + ei.γl(vi − vj , z))− φ(vn)) dz (3.10)

for the simple mean-field interacting system and by

1
n

∑
1≤i,j≤n

∫
[−Al,0[∪]0,Al]

1
2

(
φ(vn + ei.γl(vi − vj , z) + ej.γl(vj − vi, z))− φ(vn)

)
dz (3.11)
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for the binary mean-field interacting system. In these formulas, vn = (v1, ..., vn) denotes
the generic point of (IR2)n and ei : h ∈ IR2 7→ ei.h = (0, ..., 0, h, 0, ..., 0) ∈ (IR2)n with h at
the i-th place.
Both cases can be treated indifferently in a probabilistic point of view. The first particle
system can be related to the Nanbu algorithm (cf. [?]) and is as simple as possible. The
second one can be related to the Bird algorithm (cf. [?]). Its main interest is that it
conserves momentum and kinetic energy. Moreover a set of numerical experiments shows
it looks faster and more precise. We thus consider from now on the binary mean-field
system. We denote by

V l,n = (V l,1n, ..., V l,nn)

the Markov process defined by (??).
We consider as in the previous section a pathwise representation of such processes using
Poisson point measures. In this cutoff case, we could write a pathwise representation of
the interacting systems in terms of solutions of SDEs driven by Poisson point measures
(without compensation), but in order to obtain the tightness below, we need to use as
in the previous section the corresponding representation using compensated Poisson point
measures.
More precisely, we introduce a family of independent Poisson point measures (N l,ij)1≤i<j≤n
on [0, T ]×[−Al, 0[∪]0, Al] with intensities 1

2dzdt and (Ñ l,ij)i,j the compensated martingales.
For i > j, we set N l,ij = N l,ji. Now we consider the process (V l,in)1≤i≤n solution of the
following stochastic differential equation:

V l,in
t = V i

0 +
1
n

n∑
j=1

∫ t

0

∫
[−Al,0[∪]0,Al]

γl(V
l,in
s− − V l,jn

s− , z)Ñ l,ij(dz, ds)−
∫ t

0
δl(V

l,in
s− − V l,jn

s− )ds.

(3.12)

We construct it easily by working recursively on each interjump interval of the point process
(N l,ij)1≤i,j≤n. It is a n-dimensional Markov process with generator the one described above.
Let us denote by

µl,n =
1
n

n∑
i=1

δV l,in

the empirical measure of this system and by (πn,l)n the sequence of laws of µl,n, which are
probability measures on P(ID([0, T ], IR2)).

Theorem 3.3 Assume (S), (MS), (SA). Let (V i
0 )i≥1 be i.i.d. Q0-distributed random vari-

ables. Then the sequence (πn,l)l,n is uniformly tight for the weak convergence and any limit
point charges only probability measures which are solutions of (MP ). Thus any limit point
(for the convergence in law) of the sequence (µl,n) is a.s. a solution of (MP ).

Proof. To prove this theorem, we will show
1) the tightness of (πn,l)n in P(P(ID([0, T ], IR2))),
2) the identification of the limiting values of (πn,l)l,n as solutions of the nonlinear martingale
problem (MP ).
One knows (cf. [?] Lemma 4.5) that the tightness of (πn,l)l,n is equivalent to the tightness
of the laws of the semimartingales V l,1n belonging to P(ID([0, T ], IR2)). This tightness can
be proved by showing the tightness of the law of the supremum of |V l,1n

t | on [0, T ] and the
the Aldous criterion for V l,1n.
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One easily proves by a good use of Burkholder-Davis-Gundy and Doob’s inequalities for
(??) and thanks to (??), (??) and (MS) that

sup
l,n

E(sup
t≤T

|V l,1n
t |2) < +∞ (3.13)

from which we deduce without difficulty the tightness of the laws of V l,1n and hence the
tightness of the sequence (πl,n).
Let us now prove that all the limit values are solutions of the nonlinear martingale problem
(MP ). Consider π∞ ∈ P(P(ID([0, T ], IR2))) a limit value of (πl,n). It is the limit point of
a subsequence we still denote by (πl,n).
For φ ∈ C1

b (IR
2), 0 ≤ s1, ..., sk ≤ s < t, g1, ..., gk ∈ Cb(IR2), Q ∈ P(ID([0, T ], IR2)) and for

X the canonical process on ID([0, T ], IR2), we set

F (Q) =
〈
g1(Xs1)...gk(Xsk

)
(
φ(Xt)− φ(Xs)−

∫ t

s
LQuφ(Xu)du

)
, Q

〉
= < g1(Xs1)...gk(Xsk

)(Hφ
t −Hφ

s ), Q > (3.14)

where Lqφ is defined in (??) and then

Hφ
t = φ(Xt)− φ(X0) +

∫ t

0

∫
w∈IR2

∇φ(Xu)δ(Xu − w)Qu(dw)du (3.15)

−
∫ t

0

∫
IR∗

∫
w∈IR2

(φ(Xu + γ(Xu − w, z))− φ(Xu)− γ(Xu − w, z).∇φ(Xu))Qu(dw)dzdu.

Our aim is to prove that < |F |, π∞ >= 0. The mapping F is not continuous since the
projections X 7→ Xt are not continuous for the Skorohod topology. However, for any Q ∈
P(ID([0, T ], IR2)), X 7→ Xt is Q-almost surely continuous for all t outside an at most count-
able set DQ, and then F is continuous at the point Q if s, t, s1, ..., sk are not in DQ. Here
we use the continuity and the boundedness of φ, g1, ..., gk and also the continuity of (q, v) 7→∫
IR2 ∇φ(v)δ(v−w)q(dw)−

∫
IR∗

∫
w∈IR2 (φ(v + γ(v − w, z))− φ(v)− γ(v − w, z).∇φ(v)) q(dw)dz

on P(ID([0, T ], IR2)) × IR2. Now one can show that the set D of all t for which π∞(Q, t ∈
DQ) > 0 is again at most countable. Thus, if s, t, s1, ..., sk are in Dc, F is π∞-a.s. continu-
ous. Then, 〈

F 2, π∞
〉

= lim
l,n

〈
F 2, πl,n

〉
But

〈
|F |, πl,n

〉
≤
〈
|F l|, πl,n

〉
+
〈
|F − F l|, πl,n

〉
where F l is defined as F with δl and γl

instead of δ and γ.
Firstly,〈

(F l)2, πl,n
〉

= E((F l(µl,n))2)

= E

( 1
n

n∑
i=1

(M l,iφ
t −M l,iφ

s )g1(V l,in
s1 )...gk(V l,in

sk
)

)2


=
1
n
E

((
(M l,1φ

t −M l,1φ
s )g1(V l,1n

s1 )...gk(V l,1n
sk

)
)2
)

(3.16)

+
n− 1
n

E
(
(M l,1φ

t −M l,1φ
s )(M l,2φ

t −M l,2φ
s )g1(V l,1n

s1 )...gk(V l,1n
sk

)g1(V l,2n
s1 )...gk(V l,2n

sk
)
)
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where M l,iφ is the martingale defined by

M l,iφ
t = φ(V l,in

t )− φ(V i
0 )

− 1
n

n∑
j=1

∫ t

0

∫
[−Al,0[∪]0,Al]

(
φ(V l,in

s + γl(V l,in
s − V l,jn

s , z))− φ(V l,in
s )

)
dzds

and with Doob-Meyer process given by

< M l,iφ >t=
1
n

n∑
j=1

∫ t

0

∫
[−Al,0[∪]0,Al]

(
φ(V l,in

s + γl(V l,in
s − V l,jn

s , z))− φ(V l,in
s )

)2

dzds

and for i 6= j,

< M l,iφ,M l,jφ >t =
1
n

∫ t

0

∫
[−Al,0[∪]0,Al]

(
φ(V l,in

s + γl(V l,in
s − V l,jn

s , z))− φ(V l,in
s )

)
(
φ(V l,jn

s + γl(V l,jn
s − V l,in

s , z))− φ(V l,jn
s )

)
dzds.

The right terms in (??) go to 0 thanks to the expression of the Doob-Meyer process, to the
uniform integrability proved in (??) and thanks to (??) and (??). Moreover the convergence
is uniform on l. Hence

lim
n
〈|F l|, πl,n〉 = 0,uniformly in l.

Otherwise, it is not hard to check that

〈|F − F l|, πl,n〉 = E(|F − F l|(µl,n)) ≤ Kl sup
l,n

E(sup
t≤T

〈|v|2, µl,nt 〉)

The last term is finite by (??) and

Kl ≤ K

∫ 1
l

0
θ2B(X, θ)dθ, (3.17)

which tends to 0 as l tends to infinity thanks to (SA).
We have then proved that

〈|F |, π∞〉 = 0.

Thus, F (Q) is π∞-a.s. equal to 0, for every s, t, s1, ..., sk outside of the countable set DQ.
It is sufficient to assure that π∞-a.s., Q is solution of the nonlinear martingale problem
(MP ). 4

Corollary 3.4 Assume (S), (MS), (SA) and consider a sequence µlr,nr which converges to
Q. Then the probability measure-valued process (µlr,nr

t )t≥0 converges in probability to the
flow (Qt)t≥0 in the space ID([0, T ],P(IR2)) endowed with the uniform topology.

Proof. We first check that the limit point Q is deterministic. This is not obvious, since the
uniqueness for (MP ) is not known, and the only information we have about Q is that it a.s.
satisfies (MP ). However, the uniqueness of a solution Ql holds for (MP )l, the martingale
problem (MP )l being defined as (MP ), but with the cross section with cutoff Bl. Thus
any (random) probability measure satisfying a.s. (MP )l is a.s. equal to Ql, and thus is
deterministic. But one can check that the limit point Q of µlr,nr is equal to the limit of
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Qlr , and hence is deterministic.
The flow (Qt)t≥0 is thus deterministic and continuous, the continuity (for the weak con-
vergence topology) being obvious from the expression of (MP ). Then the convergence to
(Qt)t≥0 is the same for the Skorohod or for the uniform topology. We use an intermediary
lemma, proved in Méléard [?], Lemma 4.8, (see also Léonard [?]).

Lemma 3.5 Let (µn)n be a sequence of random probability measures on IDT which con-
verges in law to a deterministic probability measure Q in P2(IDT ). Let us assume moreover
that

lim
r→0

sup
0≤t≤T

EQ

(
sup

t−r<s<t+r
|∆Xs| ∧ 1

)
= 0 (3.18)

where X is the canonical process on IDT , then the flow (µnt )t≥0 converges in probability to
(Qt)t≥0 in ID([0, T ],P(IR2)) endowed with the uniform topology.

This result is not obvious since in IDT the projections are not continuous for the Skorohod
topology.
Let us verify (??) in our context. We know by the point (ii) of Theorem ?? that X can be
obtained on an enlarged probability space as solution of (??). Then

EQ

(
sup

t−r<s<t+r
|∆Xs| ∧ 1

)
≤ EQ

 ∑
s∈[t−r,t+r]

|∆Xs|2 ∧ 1

 1
2

≤
(∫ t+r

t−r

∫ 1

0

∫
IR∗

EQ|γ(Xs− −Ws−(α), z)|2dzdαds
) 1

2

≤ K

(∫ t+r

t−r

∫ 1

0
EQ((|Xs− −Ws−(α)|2)dαds

) 1
2

≤ KrEQ

(
sup
t≤t

|Xt|2
) 1

2

.

But this last quantity tends to 0 as r tends to 0 since EQ(supt≤T |Xt|2) is finite. Indeed,
since Q ∈ P2(IDT ), the canonical process X is a L2

T -process under Q. We have the result. 4

We will now explicit the algorithm of simulation.

4 The Monte-Carlo algorithm

We deduce from the above study an algorithm associated with the binary mean-field in-
teracting particle system (Bird’s approach). We could do the same thing with the simple
mean-field interacting particle system (Nanbu’s approach), but the numerical results seem
less efficient.
From now on, the cross-section B, the initial distribution Q0, the terminal time T > 0,
the size n ≥ 2 of the particle system and the cutoff parameter l > 0 are fixed. We denote
by Bl(z, θ) the cross-section with cutoff. Because of Theorem ??, we simulate a particle
system following (??), i.e. the whole path (V n

t )t∈[0,T ] ∈ ID([0, T ], (IR2)n).
First of all, we assume that V n

0 is simulated according to the initial distribution Q⊗n0 . Then,
we denote by 0 < T1 < ... < Tk the successive jump times until T of a standard Poisson

12



process with parameter nAl. For example, one simulates independent exponential laws
with this rate which describe the inter-collision time-intervals.
Before the first collision, the velocities do not change, so that we set V n

s = V n
0 for all s < T1.

Let us describe the first collision. We choose at random a couple (i, j) of particles according
a uniform law over {(l,m) ∈ {1, ..., n}2; m 6= l},. We choose z uniformly on the interval
[−Al, Al], and we finally choose the collision angle following the law 1

2Al
dz. Then we set

V n,i
T1

= V n,i
0 + γl(V

n,i
0 − V n,j

0 , z)

V n,j
T1

= V n,j
0 + γl(V

n,j
0 − V n,i

0 , z)

V n,l
T1

= V n,l
0 if l 6= {i, j}

Since nothing happens between T1 and T2, we set V n
s = V n

T1
for all s ∈ [T1, T2[.

Iterating this method, we simulate V n
T1
, V n

T2
, ..., V n

Tk
, i.e. the whole path (V n

t )t∈[0,T ], which
was our aim.
Notice that this algorithm is very simple and takes a few lines of program and does not
require to discretize time. It furthermore conserves momentum and kinetic energy.

5 Numerical study.

We now would like to give an idea about the speed of convergence of the previous (Bird)
algorithm. We consider the case of interactions in 1/r3, for which the cross section is given
by B(z, θ) = z−1θ−2. Unfortunately, this collision kernel does not satisfy our assumptions.
We thus consider a cross section of the form BM (z, θ) = (z−1 ∧M)θ−2, which satisfies (S),
(MS), and (SA).
Notice that BM (z, θ) does not integrate θ, so that the method used in [?] does not allow
to consider such a cross section.

The associated cross section with cutoff is given by BM,l(z, θ) = (z−1 ∧M)(θ−21{|θ|≥1/l}).
We also consider the initial distribution Q0(dv) = 1[−1,1]2(v)dv. Then explicit computations
of gM (x, z), AMl (X), AMl , and γMl (X, z) (corresponding to the cross sections BM and BM,l)
can be done.

For each M, l, we denote by {QM,l} the solution of the martingale problem with the cross
section BM,l, obtained by Theorem ??. We know that for each M , each l, {QM,l} is the
limit, as n tends to infinity, of the empirical measures µM,l,n associated with the simulable
empirical particle system. We also know that for each fixed M , {QM,l}l is tight, and that
any limit point QM is solution of the martingale problem with the cross section BM .

In order to test our algorithm, we decide to study the behaviour of the following moments
of order 4, at the instant t0 = 1:

mM =
∫
IR2

|v|4QMt0 (dv) ; mM,l =
∫
IR2

|v|4QM,l
t0 (dv)

and mM,l,n =
∫
IR2

|v|4µM,l,n
t0 (dv)

Testing algorithms with the moments of the solution to the Boltzmann equation was great
in the case of Maxwell molecules, in which case explicit computations of these moments are
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known. The moment of order 2
∫
|v|2Qt(dv) being constant in t (it represents the kinetic

energy of the system), people traditionally study the moment of order 4, which is the first
non-trivial moment. We thus carry on studying this quantity, even if no explicit computa-
tion may be done in our context.

First of all, we make simulations, in order to choose M in such a way that the error due to
this (spatial) cutoff seems to be small.
With l = 64, n = 50000, taking each time the mean over 100 simulations, denoting by
< mM,64,50000 > the mean over 100 experiences, we obtain with quite a good precision (the
empirical mean error

〈∣∣∣mM,64,50000− < mM,64,50000 >
∣∣∣〉 is of the order of 5.10−3):

M 1 4 8 16 32
< mM,64,50000 > 0.7870 0.7906 0.7908 0.7909 0.7910

The quantity mM,64 does thus seem to converge very fastly, and we decide, from now on,
to consider the cross section B16.
We now study, for M = 16 fixed, the convergence of m16,l as l tends to infinity. With
n = 50000, taking each time the mean over 100 simulations, we obtain with quite a good
precision (the empirical mean error is again of the order of 5.10−3):

l 1 2 4 8 16 32 64 128
< m16,l,50000 > 0.7075 0.7535 0.7740 0.7828 0.7868 0.7890 0.7912 0.7910

One might remark that m16,l goes to 0, 791 when l tends to infinity, with a speed of con-
vergence in |m16,l − 0, 791| ' 0.07/l. This speed of convergence in 1/l is known for the
Maxwell cross section 1/θ2, see for example [?] for a proof in the 3D case.

We finally choose to study the speed of convergence of m16,64,n to m16,64, when n tends to
infinity. We obtain the figure 1.
It thus seems that a central limit theorem holds, at least for M and l fixed. See [?] for the
proof of such a result in the Maxwell context. We of course could not hope a better speed
of convergence, since the method we use is a Monte Carlo method.

Acknowledgments : We wish to thank Bruno Pinçon for his precious help while coding
the algorithm.
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