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Abstract

This article deals with a way to solve the spatially homogeneous Landau equation using
probabilistic tools. Thanks to the study of a nonlinear stochastic differential equation driven
by a space-time white noise, we state the existence of a measure solution of the Landau equa-
tion with a probability measure initial data, for a generalization of the Maxwellian molecules
case. Then, by approximation of the Landau coefficients, the first result helps us to state the
existence of a measure solution for some soft potentials (y € (—1,0)). This second part is
based on the use of nonlinear stochastic differential equations and some martingale problems.
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1 Introduction

The Landau equation is obtained as a limit of the Boltzmann equation, when all the collisions
become grazing. In the spatially homogeneous case, it writes:
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where f (v,t) > 0 is the density of particles having the velocity v € R? at time ¢ € RT, and
(aij (2));<; j<a 15 & nonnegative symmetric matrix depending on the interaction between the par-
ticles.

This equation is also called the Fokker-Planck-Landau equation. Arsen’ev and Buryak (see [1])
have shown that the solutions of the Boltzmann equation converge toward the solutions of the
Landau equation when grazing collisions prevail. On that topic, one can read the paper of Villani
([10]), which gives a lot of references.

If we assume, for example, that any two particles at distance r interact with a force proportional
to T%, the matrix a has the following expression, up to a multiplicative constant,

aij (2) = 2|72 10 (2)
where

e |z| is the euclidean norm of z in R9,
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e II(z) is the orthogonal projection on 2+ (z # 0), i.e. Il;; (2) = &;j — —=

s—(2d—1)

* 7= s—1

The Landau equation has a physical sense when d = 3. However, we will prove some results in
more general cases (d > 1). Moreover, in this paper, we will consider a matrix a of the form:

aij (2) = | 11, (2) o (|217)

where h is a bounded nonnegative continuous function. We define
d
bi(2) =Y 95, (2)
j=1

So by integration by parts, for any test function ¢, we can write a weak formulation of the
Landau equation, at least formally (see [10]),
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where 0;p = 70, and ;¢ = M

The properties of the equation depend heavily on - :

e v > 0, one speaks of hard potentials,
e v = 0 corresponds to the case of Maxwellian molecules,
e v < 0, one speaks of soft potentials,

e v = —3 corresponds to the Coulomb interaction.

C. Villani studies carefully the Landau equation for Maxwellian molecules in [11]. L. Desvillettes
and C. Villani prove in [3] the existence of solution, in a weak sense, for hard potentials under some
conditions on the initial data. Little is known about soft potentials, we can mention the work of
C. Villani, [10], and the one of T. Goudon, [6]. Those two independent articles prove the existence
of a weak function solution of the Landau equation when v € (—2,0) and when the initial data is a
nonnegative function with finite mass, energy and entropy, using the convergence of the solutions
of the Boltzmann equation toward the solutions of the Landau equation.

Our paper deals with an original probabilistic way to solve the spatially homogeneous Landau
equation for v € (—1,0]. Thanks to this method, we can assume weaker conditions on the initial
data than in the previous articles.

Jof?
Remark 1 Choosing ¢ (v) = 1,v;, or 5y we can easily check that the mass, the momentum and

the kinetic energy are conserved.



So, if we suppose that [;, f (v,0)dv =1, we can define the probability flow (Pt) >0 by
P, (dv) = f (v,t) dv

Since the functions z — a;; (2) and z — b; (2) are respectively even and odd for any 1, j, we
obtain a new expression of the Landau weak formulation, which will be the base of our study,

% ¢ () P (dv) = %i /R By (dv) ( /R P (dv) ayg (v—v*)) dijp (v) (3)

ij=1
+§;/Rd P; (dv) (/Rd P, (dvy) b; (v — U*)) Oip (v)

Definition 2 Let Py be a probability measure on R? with a finite two-order moment (i.e. [pq [ Py (dv) <
00). A measure solution of the Landau equation (3) with initial data Py is a probability flow (Py),~,

on R? satisfying (3) for any function o € C? (Rd,R), where C¢ (Rd, R) is the space of bounded func-

tions of class C* on R¢ with bounded derivatives.

Remark 3 With an abuse of notation, we will still say that a probability measure P on C ([O, T ,Rd)
is a measure solution of the Landau equation when its time-marginals flow is a measure solution
in the sense of Definition 2.

There are two ways to solve the equation (3) in a probabilistic sense. The first consists in
finding a probability measure P which satisfies a nonlinear martingale problem. Funaki solves in
[5] this martingale problem when the matrix a is a nondegenerate matrix. But, the coefficients of
the Landau equation are degenerated. The second way consists in associating with the Landau
equation (3) a nonlinear stochastic differential equation driven by a space-time white noise. Those
two methods are in relation. Indeed, a solution of the differential equation is a solution of the
martingale problem and a solution of the martingale problem is a weak solution of the differential
equation (see the article of N. El Karoui and S. Méléard, [4]).

The benefit of the second method is that one can develop a Malliavin calculus to state the
existence of a density and then to show the existence of a weak function-solution of the Landau
equation (2). If, for any ¢t > 0, P, has a density with respect the Lebesgue measure on R?,
i.e. there exists a nonnegative function f (.,¢) such that P; (dv) = f (v,t)dv, then f is a weak
function-solution of the Landau equation (2). This question is studied in [7].

In this paper, we are firstly interested in solving the Landau equation with regular coefficients
(for example, v = 0 and h = constant). In this case, we solve a nonlinear differential stochastic
equation driven by a white noise to find a measure solution of the Landau equation.

Secondly, using the results obtained in the first part, we study the Landau equation with
v € (—1,0] and h some bounded continuous function. We approximate the coefficients by some
coeflicients having the same regularity as in the first part. Then, thanks to the study of martingale
problems and of nonlinear stochastic differential equations, we state the existence of a measure
solution of the Landau equation with v € (—1,0]. Moreover, we obtain a weak solution for the
associated nonlinear stochastic differential equation.

Notations

e C([0,1] ,Rd) is the space of continuous functions from [0, 7] to R?, and for k € N, CF ([0, 77 ,Rd)
is the space of functions of class C* with all its derivatives bounded up to order k.

o My (R) is the set of d x d’ matrix on R.



o If (P"),~, and P are probability measures, we denote by P" = P the convergence in
distribution of the sequence (P") toward P.

e K is an arbitrary notation for a constant (K can change from line to line).

We consider, as it was mentioned above, a matrix a which has the following form:

aij (2) = |22 b (|2 (aij - ) (4)

|2I°

with h some bounded nonnegative continuous function on Ry and v € (—1,0]. Then, the vector b
has the following expression

d
bi(2) = Z djaij (2)

—(d= 1) (|=) |2l 2 (5)

For example, in dimension 2, a and b are given by
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and in dimension 3, they are given by

222+z32 —2129 —2123
a(z) = |Z\’Yh(|73\2) —Z1%22 212+z32 —2923
—2Z123 —2923 ,212 + 222
21
b(z) = =207 R (|2F) | 2
Z3

As a is a symmetric nonnegative matrix, there exists a matrix ¢ in Mg ¢ (R) such that

a=o0.0" (6)
where o* is the adjoint matrix of o and d’ is an integer> 1. There is not uniqueness of o, one can
take for example

o(2) = : a(2) (7)

275\ Jh (121°)

(I (z) is a projection, then a(z).a(z) = |z|""*h (|z|2) a(2)), or in dimension two

7@ =4\ () | 2] )

—z1

and in dimension three

z92 —2Z3 0
o (z) =|2|Z/h (|z\2> -z 0 23 (9)
0 Z1 —Z9



If we denote by ¢ a constant > 0 such that
Vz € R4 (|z|2) <c

one can notice that

C‘Z|’Y+2

(d—1)ele/"
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and in the previous examples

o (2)] < Velz|*T

2 The Landau equation with regular coefficients

2.1 A nonlinear stochastic differential equation associated with the Lan-
dau equation

We associate with the Landau equation a nonlinear stochastic differential equation driven by a
space-time white noise which gives a probabilistic interpretation of the Landau equation (3). We
highlight the nonlinearity using two probability spaces.

Let (Q, F(Ft) >0 ,IP) be a filtered probability space and ([0, 1], B([0,1]),d«) be an auxiliary
probability space, where da is the Lebesgue measure on [0, 1].

The Skorohod Theorem (see [9]) links up those two spaces : it states that for any probability
measure P on the polish space C ([0, T] ,Rd), with the topology of the uniform convergence, there
exists a random variable Y : ([0,1], B([0,1]) ,da) — C ([0,7],R?) which has the distribution P.

For the clarity of the exposition, we will denote by F the expectation and £ the distribution
of a random variable on (Q, F,P) and E,, L, for a random variable on ([0, 1], B ([0,1]), da) .

For k > 2, we define P, the space of continuous adapted processes X = (X;),-, from

(Q, F(F)iso ,]P’) to R%, such that ¥T' > 0

E{ sup |th} < 00
0<t<T

and Py o the space of continuous processes Y = (Y;),5, from ([0,1],58([0,1]),da) to RY, such
that V7' > 0 B

Eq [ sup IYtlk] <0
0<t<T

Let T > 0 be arbitrary fixed. p; denotes the Vaserstein metric on the space of probability
measure on C ([0,7],R?) defined by

2 _ _
pr (PQ) = inf {E ( sup |4, — B with distribution P and @) respectively

|2> . Aand B processes on C ([0,T],R?) }
0<t<T

We define the d’-dimensional process wd

wd = |
Wy



where the W; are independent space-time white noises with covariance measure dadt on [0, 1] x
[0,00) (according to Walsh’s Definition, [12]).

Let X, be a random vector on R? independent of W with a finite moment of order 2.

Let o and b be the functions defined by (6) and (5) respectively.

We consider the following nonlinear stochastic differential equation

t 1 t 1
X, = Xo +/0 /0 o (X — Y, () WY (da, ds) +/0 /0 b(X, — Y, (a))dads (NSDE (c,b))
with £ (X,) = Lo (Y;) V¢ > 0.

Proposition 4 Let Py be a probability measure with a finite moment of order 2 . Let Xg, Yy
be random variables such that £(Xo) = Lo (Yo) = Po. If we assume that there exists a solution
(X,Y) of (NSDE (0,b)), in Pa X Pa,q, with initial data (Xo,Yo), such that ¥Vt L (X;) = Lo (Y2).
Then the common flow (Py), is a measure solution of the Landau equation with initial data Py.

Proof. Let ¢ € C? (]Rd,]R).
Using [t6’s formula, we obtain

p(X) = / / Bijp (X,) aiy (X, — ) Py (dy) ds

zgl

d_ pt
+Z/ / ditp (Xs) b (X —y) P (dy) ds
+ZZ//U”€X Ys (@) Oip (Xs) Wi (dav, ds)

i=1 k=1

According to Theorem 2.5 in [12], Vi, k fot fol oik (Xs =Yy (@) 0ip (Xs) Wi (dav, ds) is a mar-
tingale. So the expectation of ¢ (X;) satisfies

Elp(Xy)] = Z/ [”go (/Rdaij(Xsy)Ps(dy))]ds

zgl

+i/0tE {@#’(Xs) (/Rd bi (Xs —y) Ps (dy))} ds

Since L (X;) = P, Vt > 0, the proposition is proved. m
Consequently, it is enough to solve the nonlinear stochastic differential equation to find a
measure solution of the Landau equation.

2.2 Solving a nonlinear stochastic differential equation driven by a white
noise

We use the same notations as in part 2.1.

Definition 5 Let n and f be two continuous functions. Let w4 be a Process on RY having
independent white noises components on [0,1] x [0, 4+00) with covariance measure dadt and Xo
be a random wvariable with finite moment of order 2. We consider Yy a random wvariable on
([0,1],B(]0,1]) ,d) such that L, (Yo) = L(Xo). We will say that a couple (X,Y) is solution
of the nonlinear stochastic differential (NSDE (n, f)) if for any t > 0

X, = Xo+// (X5 — Y, (). d’(da,ds)+/ot/01f(xsy;(a))dads

and L(X) = L,



We state the existence of a solution of (NSDE (7, f)) under some conditions on the regularity
of the functions n and f:
Assumption (H): n and f are globally lipschitz continuous functions from R? respectively to

M. (R) and to RY, where d and d’ are integers > 1.

To simplify the expressions, we consider in this part d = d'= 1. Nevertheless the same argu-
ments can be applied when the dimensions are higher.

The following method, based on a stochastic calculus for a white noise, is a variation of the
method built by L. Desvillettes, C. Graham and S. Méléard in [2] in the different case of Poisson
measure.

Definition 6 Let W be a space-time white noise with covariance measure dadt on [0, 1] x [0, +00),
Xo an independent random variable with finite 2-order moment, Z a Pa-process and Y a Pa qo-
process. The following equation

t ol t ol
X =Xo+ / / N (Zs — Ys (o)) W (da, ds) + / / f(Zs —Ys (@) dads (10)
o Jo o Jo
defines an application ®
2., Xo, Wr— X =0 (Z,Y, Xg,W).
We first state a technical lemma:

Lemma 7 If Xo and W are such_ as in Dgﬁm’_tion 6. Fori=1,2, we cons_z'der the processes Z' €
Py and Y' € Py . We define X' = @ (Z’,Yl,Xo,W), 1 =1,2. Then X* € Py. Moreover, for
any T > 0, there exists a constant K > 0 such that

T T
E[p \xs—xfﬂg{/ B |z - 2] as+ | E. [\nl—YfF]ds}
0<t<T 0 0

Proof. It is clear that the processes (X/),., are continuous.

Let T > 0. Using the Burkholder-Davis-Gundy and the Holder inequalities, we obtain that
T 1
E [ sup | X{ — Xfﬂ < 2 {C'E (/ / (0 (Z; =Y (@) =0 (22 =Y (a))]2dads>
0<t<T o Jo
T 1 )
+TFE / / [f (2 =Y () = f (22 - Y2 ()] dads
o Jo

Since n and f are lipschitz continuous, if we denote by K, and K their lipschitz constant
respectively, we have

T T
1 2|2 2 2 1 2|2 1 2|2
EOgET{Xt—Xt|]§4(CKH+TKf){/O E(|ZS—ZS|)ds+/O Ea(|YS—YS|)ds}

The lemma is proved. m
We give now a solving method for a linear stochastic differential equation.

Theorem 8 Assume that W is a space-time white noise with covariance measure dadt on [0, 1] x
[0,00), Xy is an independent random variable with finite 2-order moment and Y a Pa o-process.
If n and f satisfy the Assumption (H), the equation

Xe=Xot [ [ a0t i@ wawa + [ [ 1o vi@ydeas o)

has a unique strong solution X belonging to Ps.



Proof. We prove the existence of a solution of (11) which belongs to P, using a standard
method of approximation of the solution by the following Picard sequence, for any ¢ > 0

X) =

X
Xt = X:Jr/ot/oln(X;‘— () W (da, ds) //fX” (@) dads

(The proof is easy and can be adapted from the proof of theorem 10.)
Moreover, using Gronwall’s Lemma, we state the strong uniqueness on [0,7] for any 7> 0. =

Remark 9 Let X be a solution of the linear stochastic differential equation

Xe=Xot [ [ a0t -vi@ Wi+ [ [ 1o vi@deas  2)

The strong uniqueness of X implies as usual the uniqueness in law. Moreover, the distribution of
X depends only on the distribution of Y through its flow (Lo (Y7))s>q -

Proof. We define, for any ¢ > 0, the flow P, = £, (Y;) and a martingale measure W% on
[0,1] x [0,4+00) such that VA € B([0,1]),Vt > 0,

_/Ot/olmys (@) W (da, ds)

L(WF(A) = < / / L4 (Y, dads)
— /\/<o, /0 /R I (v) P, (dv)ds>

where A/ (), k) is the Normal distribution with expectation A and variance k. Moreover, if ANB = (),
we have W (AU B) = WP (A) + WF (B).

So W is a white noise with covariance measure P; (dv)ds (according to Walsh’s Definition,
[12]). Then, we can rewrite (12) in the following way

X, = X0+// y) WF (dy,ds) //f P, (dy) ds

A white noise is entirely defined by its covariance measure, and the one of W is v (dy, ds) =
P, (dy) ds. Consequently, the distribution of X depends only on the distribution of Y~ through its
flow (Lo (Y2));50- ®

We now study the nonlinear stochastic differential equation (NSDE (n, f)).

‘We notice that

Theorem 10 Assume that W< is a process on RY having independent white noises components
on [0,1] x [0, +00) with covariance measure dadt, and assume that Xo is an independent random
vector on RY with finite moment of order 2. Then, under the Assumption (H), there exists a couple
(X,Y) solution of the nonlinear equation (NSDE (n, f)). Moreover, (X,Y) € P2 X Paq.

We notice that the distribution of X depends only on the distribution Py = L (Xo) and not on
the specific choice of the white noise and of Xj.

Proof. We prove this theorem in dimension d = d’ = 1. The proof is almost the same in higher
dimension if we work with each component, but the expressions are more complex.

We now use a generalization of the Picard iteration method. We construct two recursive
sequences:



e Let X° such that Vs > 0 X? = X, and YV such that Vs > 0 Y? = Y, where Y is a

random variable on ([0, 1], B ([0, 1]) , de) such that £, (Yy) = £ (Xo) (obtained by Skorohod’s
Theorem).

e We define
t 1 t 1
Xt =X+ [ [0 -y Widasds) + [ 7000 - ¥ (@) dads
0 0 0 0

On the probability space ([0, 1], B ([0, 1]), da), we construct a continuous process Y"1 such
that

Lo (YMH YO Y™ =L (X" | X, ., X™)
In particular, we have for any n > 0
Lo (YO, Y™")=L(X°.,X")
We define

gn(t)=F [ sup (XS”Jrl — XS”)Q]
0<s<t

Lemma 7 implies

gn ()

IN

K{/T [z = x21] ds+/TEa (v —ve P ds}

= 2K/ |X” X 1|}ds<2K/ gn-1(s) ds

t t1 tn—1
(ZK)"/ dtl/ / go (tn) dt
0 0 0

For a fixed T > 0, it is easy to state that go is bounded on [0,T]. If we define C' =
SuPg<¢<T 90 (t), we have

IN

2K)" T™
gn (1) < CT
Then, for any T > 0, the sequence (X"), -, converges for the norm ||U| = sup Us
- 0<s< L2

and, using Borel-Cantelli’s Lemma, (X™) converges almost surely uniformly on [0, 7] toward a
continuous process X. Consequently, (Y™), -, converges also in L? and a.s.. We denote by Y its

limit. Since £, (Y°,..,Y") =L (X%, .., X") Vn, we have L, Y)=L(X).
In particular, for any T > 0,

supE( sup Xt"|2> = supF, ( sup |Yy"| ) < 0o
n>0 0<t<T n>0 0<t<T

Using dominated convergence theorem, we easily check that (X,Y) is effectively a solution of
the nonlinear stochastic differential equation

X2 ok [ [ nex v @ w s+ [ [ 56~ (@) dads

Moreover, thanks to the strong uniqueness proved in Theorem 8 and consequently to the unique-
ness in law, the distribution of X depends only on Py = £(Xp). =



Theorem 11 Under Assumption (H), uniqueness in law holds for a solution of (NSDE (n, f)).
Proof. Assume that (U, V) is a solution on C ([0,7],R?) with initial data X; of
U=2((U,V,Xo,W) with £, V)=L{U)=Q
Assume that (X,Y") is the solution given by Theorem 10 of
X =& (X,Y, Xo,W) with Lo (V) = L(X) =P

We want to state that P = Q.

Let T > 0.

Let 7 € 0,77, let p, be the Vaserstein metric on the space of probability measures on
C ([0,7],R?) defined by

. (P,Q)° = inf {Ea (025 |A; — Bt|2> Lo (A)=P,L,(B) = Q}

We prove that there exists at least one 7 > 0 such that p, (P, Q) = 0.
Let ¢ > 0, there exists A° and B¢, two Ps 4-processes, such that £, (4%) = P,L, (B°) = @
and

oo (P.Q) < E. ( sup A5 - BEI2> <o (P.QP+c

0<t<t

Let X¢ be the solution of X¢ = ®(X*, A%, X, W) given by Theorem 8. Since L, (A°) =
L, (Y) = P and following Remark 9, we have £ (X®) = £L(X).

If U¢ is the solution of U® = & (U¢, B®, Xy, W) obtained in Theorem 8, we have also £ (U¢) =
L({U).

Lemma 7 implies

0<t<r

E{sup Xf—Uf|2] < 4(CK2+7K?) {/ E“X;‘:—Uﬁﬂ ds+/ E., [\A;-B;F] ds}
0 0
)

< 4(CK2+ 1K} {/0 E{sup |X,5U5|2] ds+T(pT(P7Q)2+€)}

0<u<s

and by Gronwall’s Lemma, we have

E { sup |X; — Uf|2] <d4r (CK% + TKJ%) (pT (P,Q)* + s) exp (47 (CK?] + TKJ%))
0<t<r

Thus, for any ¢ > 0,
pr(PQ)* < 47 (O 4 7KF) exp (17 (K + 1K) (pr (P.Q)P° )
If we choose T > 0 such that
47 (CK2 + 1K?3) exp (47 (CK2 + 7K3)) < 1

then p,. (P,Q) = 0.

We have uniqueness in law on [0, 7], but we would like to obtain uniqueness in law on [0,7].
We will extend the property by iteration.

For n > 1, we define X" = (X,,74+),>0, and we define similarly Y™, U, V" ...

10



Let us assume that we have uniqueness in law on [0, n7] . Then, in particular, £ (X,,) = £ (Upr).
We consider the process U solution of

B t+nt 1 B t+nt
Orine =Yoot [ [ 0(00=Ve@) W o)+ [ / Vi(a))dads  (13)
nrt 0

with initial data Xm
We can rewrite ( in the following way

Xm+// U" VP (a ))W(da,ds)—i—/ot/olf(ff;‘Vf(a))dads

where T is a white noise with covariance dadt on [0, 1] x [0, 00) defined by VA € B ([0, 1])
W(Ax[0,t]) = W(Ax[0,nT+1t]) — W (A x [0,n7])
W (A x [nT,nT +1])
(if Ae B([0,1]) is fixed, (W (A x [0,])),~, is an independent increment process).
According to the uniqueness in law, ob;ained in Remark 9, £ (U") =L (U") on [0, 7] and thus

c <U"> = Lo (V™) on [0,7].

Therefore, we have £ (U ”) =L (X™) on [0,7]. We deduce from the recurrent hypothesis that

the flows (Lo (Vi))o<t<rinr a0d (Lo (Y2))g<i<rin, are the same. According to Remark 9, we have
L(X)=L(U) on [0,(n+1)7]. Hence, by iteration, we conclude £ (X) = L (U) on [0, T] for any
T7>0 =

2.3 Existence of a measure solution of the Landau equation with regular
coefficients

In the previous part, we have proved the existence and uniqueness in law of a solution of the
nonlinear stochastic differential equation (NSDE (n, f)) when n and f satisfy Assumption (H).

According to Proposition 4, we have finally stated the following theorem

Theorem 12 Assume that Py is a probability measure with a finite moment of order 2. There is
a measure solution (P;),, with initial data Py to the Landau equation

% 0 ()P (dv) = = Z/det (dv) (/ P, (dvy) aij (U—U*)) 9ije (v)

zyl

+Z/ P, (dv) </ P, (dv,) b; (”U’U*)) dip (v)

where (a;j) o<, j<a '8 a matriz of the form a = 0.0™, with o and b satisfying Assumption (H).

Remark 13 If we assume that v = 0, choosing for o the expression (8) in dimension 2, or (9)
in dimension 3, we can notice that if h is a bounded nonnegative function of class C* such that
there exists a constant K > 0 with h’ () < I—Ig when © — +00, o and b satisfy Assumption (H).
In particular, if h is a constant function (the Mazwellian case), o and b satisfy Assumption (H).
We can generalize those properties in dimension d > 3.

When the initial data is a probability measure with a finite moment of order 2, we have thus
proved the existence of a measure solution of the Landau equation (3) under some conditions on
the function h. Nevertheless, with this approach, we cannot state the uniqueness of a measure
solution.

11



3 Study of the Landau equation for some soft potential
(7 S <_17 O])

We use the same notations as in chapter 2.

The case v € (—1,0] with h some bounded continuous nonnegative function is more difficult
than the previous case, because the continuous coefficients b and ¢ are no more lipschitz continuous
on R?. We will use the results obtained in the chapter 2 approaching the coefficients o and b by
two sequences (™) and (b™) of lipschitz continuous functions. Then, for any n > 0, we build a
sequence of random couples (X™,Y™) solution of the nonlinear differential equation:

t el t 1
X =Xo+ / / o (XD — Y (@) W (da, ds) +/ / " (X7 =Y (o)) dads
0 Jo 0 Jo
(NSDE (o™, b))

Our aim is to show that the sequence (X™) converges, in a certain sense, toward a process
X, and, if we denote by P the distribution of X, to state that P satisfies a nonlinear martingale
problem. We will see that this last property has two mains consequences: the existence of a measure
solution of the Landau equation when v € (—1,0] and h some bounded continuous function, and
the existence of a weak solution of the nonlinear stochastic differential equation:

X, =X0+/Ot/ola(xs—n(a)).wd’ (da7ds)+/0t/olb(Xs—Ys(a))dads (NSDE (o,b))

where o and b are defined by (6), (4) and (5).

For the last stage (theorem 20), we use results obtained by N. El Karoui and S. Méléard in
[4], and thereby we need a symmetric condition on o (consequently, d = d). So we choose in this
section the expression (7) given in the introduction, i.e.

ol ZiZq
o (2) = 21 4 (12F) (% - |z%>

As v € (—1,0], we can notice that o and b have linear growth: if we denote by ¢ = sup h (|z|2),
z€R4

we have (differentiating the case the case |z| > 1 from the case |z| < 1)

b(z) < el

< e(d—1)(]z| +1) (14)
o (2)] < Velo|TT

< Ve(lzl +1) (15)

Those inequalities will be very helpful below.

We give first a technical lemma.

Lemma 14 If k > 2, we assume that Xy € Lk,
If Z € P* and Y € P¥, then the process X defined by

Xt:Xo—i—/ot/ola(Zs—Ys(a)).Wd(da,ds)+/Ot/01b(Zs—Ys(oc))dads

belongs to P*.
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Proof. The i*" component of X is given by

d t ol t pl
X = Xio+ Y / / 01 (Zs — Yo (@) W, (da, ds) + / / by (Zs — Y, () dads
=Jo Jo 0 Jo

For some T > 0, by the Burkholder-Davis-Gundy and the Holder inequalities, we have

E[ sup |Xi,t|k} < P E[Xol| + G T T Z/ / 045 (Zs = Y (@)[*) dads
0<t<T

The 1/ / (1 (. ~ Y (a ))k>dads}

Since v € (—1,0], using (14) and (15), we obtain

E[ sup XM’“} < 3"'1{E[Xi70k} + CRdb T ﬁ/ / |ZS—YS(a)|+1)k) dads

0<t<T
+TR ek ( / / (|1Zs — Y (a)|+1)k> dads}

So, there exists K > 0 such that

k k T k 4 k
E[ sup | X| ] <K E[|X0| }+/ E(\ZS| )ds+/ Ea(m\ )ds
0<t<T 0 0
The lemma is proved. m

3.1 Approximation of the solution
3.1.1 Construction of the approximation

Let x be the following even smooth function
() = 1if |z] > 2
XY= 0if 2] < 1

such that for any z € R?, 0 < y(2) < 1.
We define

a"(z) = x(nz)a(z)

b"(z) = x(nz)b(2)

o"(z2) = Vx(nz)o(z)

Then, 0™ and b™ satisfy the Assumption (H) of chapter 2. Moreover, we can notice that
"] <la], [b"] <b| and |o"[ < [o].

We consider the following approximation of the Landau equation: for any ¢ € C? (Rd, ]R)

% p () P (dv) = 5 Z/det" (dv) (/ Py (dv.) al} (v—v*)) 8,50 (v) (16)

+Z/ P (dv) </ Pt”(dv*)b?(vv*)> 0i (v)

13



(We have chosen x even to keep the conservation of the mass, of the momentum and of the energy
in the approximation of the Landau equation.)

For any arbitrary T > 0, we define as follows the martingale problem (M P™) associated with
this equation: let X be the canonical process on C ([0, T],R?) (i.e., for w € C ([0,7],R?) X; (w) =
w (t)), and let us define the second order differential operator

1 d d
I'@ele) =3 Y [a@-)Qunde @+ [b -1 Q) o @

where @ is a probability measure and ¢ € C? (Rd, ]R) .
We will say that a probability measure @) on C ([O, T ,Rd) is a solution of the nonlinear mar-
tingale problem (M P") if

M} = (X)) — ¢ (Xo) - /0 L' (Q) ¢ (X.) ds

is a Q-martingale for any ¢ € CZ (R?,R), where Q, = Qo X;'. Taking the expectation of M, we
notice that a solution of the martingale problem is a measure solution of (16).

If we assume that X, € LL*, adapting the proofs of Section 2.2, we show the existence of a
solution (X", Y™) € P*¥ x P unique in law, of the nonlinear stochastic differential equation

t 1 t 1
X0 = X+ / / o™ (X" — Y7 (@) W (da, ds) + / / B (X" — Y7 () dads
0 0 0 0

Moreover, if we denote by P* = L(X") = L, (Y") the common distribution, P™ satisfies the
martingale problem (M P™), for any n.

3.1.2 Tightness of the sequence (P")

Proposition 15 Assume that Xo is a square integrable random vector of R, the sequence of
probability distributions (P™) built in Section 3.1.1 is tight.

Proof. According to Aldous’s criterium and Rebolledo’s criterium (see [8]), it is enough to
prove the following lemma to state the theorem.

Lemma 16 If X, € L*, with k > 2, there is a constant C' > 0 such that for any T > 0
supE[ sup |ka} <C
n>0  |0<t<T

We suppose Lemma 16 proved. X is random vector with a finite 2-order moment. If we denote
by M™ + A™ the Doob-Meyer decomposition of X", i.e.

o= t / ot (X~ V7 (0)) W (daw ds)

t el
A = Xo+ / / b (X =YY" (o)) dads
0 Jo

then for any T' > 0 there exists a constant K > 0 such that for any n > 0, 6 > 0, t € [0,7] and
n>0

52
P (|Ar, — AY| >n) < KE X""’}—
s (|47 — 47| > ) < K [ sup, (2P| &

0<s<T
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and

supP (|<M">

6
— (M >n) < KE| sup |X7 1 —
9<s t+6 ( >t{ 77) > { p X 7

0<s<T
where (M) is the bracket of M. According to Lemma 16, the two sequences (A™) and (M™) satisfy
the hypothesis of Aldous’s criterium. Then, for any 7' > 0, according to Rebolledo’s criterium, the
sequence (P™), where P" is the distribution of (X™) is tight in the space of probability measures
on C ([0,7],R%).

Proof. (Lemma 16)

We notice that,

o™ (2)] Vvelz#

<
b ()] < eld=1)]"

where ¢ = sup h (\z|2) Since £ (X™) = L, (Y™), according to the proof of Lemma 14, we have

z€R
E{Sup Xﬁk} < { IXo +K/ \X" )+|Xsn|k(7+1)) ds}
0<u<t
<

K1+K2/ E( sup |X,| )ds
0 0<u<s

with K7 and K5 independent of n. Using Gronwall’s Lemma, we have
E { sup |X3|k} < KpefeT
0<u<T

The lemma is proved. m &
Consequently, there is a subsequence of (P™) which converges toward a probability distribution
P. Let us now identify this distribution.

3.2 The nonlinear martingale problem associated with the probability
measure P

For a probability measure @), we define the elliptic operator
L(@) 22/%x— Q (dy) . (x +Z/ (2 — ) Q (dy) O ()
7,7=1
where ¢ € C? (Rd,R) .

For any arbitrary 7" > 0, we define the nonlinear martingale problem (M P) : a probability
measure @ on C ([0,7],R?) is a solution of (MP) if

m:ﬂ&%w%%AL@mumm

is a Q-martingale, where Q, = Q o X[ 1.

Theorem 17 Assume that Py has a finite moment of order 4. Let P™ be a solution of (M P™)
with initial data Py for any n > 0 and P be a cluster point of the sequence (P™). Then P satisfies
the martingale problem (MP) .

15



Remark 18 Assume that Py has a finite k-order moment. Let P be a cluster point of (P™).
Thanks to Lemma 16, there exists a constant C' > 0 such that

Ep [ sup |th} <C
0<t<T

where Ep is the expectation under the distribution P.

Proof. (Remark 18)

Up to a subsequence, (P™) converges toward the distribution P. According to the Skorohod
Theorem (see [9]), there exists a sequence of random processes (Y), -, and a process Y defined
on ([0,1],B([0,1]), da) such that B

Lo(Y") = P" ¥n>0
Lo(Y) = P

and Y" — Y a.s.. Using Fatou’s Lemma and Lemma 16, we notice that

n—oo
Ep { sup |th} < liminfEpn { sup |Xt|k] <C
0<t<T n—00 0<t<T

[
Proof. (Theorem 17)
Let M the process define by

M, = o (X)) — o (Xo) - / L(P.) g (X.) ds

To prove that P satisfies the martingale problem (M P), we have to state that M is a P-martingale.
Let (g;) be a sequence of bounded functions. M is a P-martingale if and only if for any
0<s<t,k>1land 0<s <. <s <s, M satisfies

Ep [(Mt — M) g1 (Xs,) -9k (Xsk)] =0

We choose 0 < s<t,k>1and 0<s; <. <s; <s.

We know that, for any n, P™ is a solution of the martingale problem (M P™). We will still
denote by (P™) a subsequence of (P™) which converges toward P : P"* = P.

As M™ is a P™-martingale, we have

Epn [(M{' = M) g1 (Xs,) -ogr (X, )] = 0

Let us prove in the following that

Epn [(M" — M) g1 (Xs,) -9k (Xs,.)] e Ep [(My — M) g1 (Xs,) .95 (Xs,)] (17)
Since ¢, ¢1,..., gr are bounded continuous functions and z — x; is a continuous function,

x — @ () g1 (@) ...gk (x¢) is a bounded continuous function, and then V¢ > 0
Epn ¢ (X2) g1 (Xe) ogx (Xo)] — Ep [ (Xe) 91 (Xy) g1 (X)) (18)

Knowing convergence (18), we just have to check the following convergence

Epn K/t L™ (P™) cp(Xu)dU) 91 (Xs,) -gx (Xsk,):|

S

. B K/:L(Pu)gp(Xu)du> 91 (Xs) ogn (Xsk)] (19)

n—oo
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We can write

B[ () e (X ) o1 ()0 ()|~ 0 | ( LR e (X i) 1 (X.) 0 (5.0
— e |( L (P g (X @) 1 () ()]~ B | L) e (X @) 1 (X) o (X0

v [( P e (%) ) 1 () ()| - 20 | L(P)¢(X.) ) 1 () ()|
(20)

We will use a product-space to simplify those expressions. As P" = P, P" Q P" = P Q) P.
If we denote by (X,Y’) the canonical process on C ([0,T],R?) x C ([0,7],R?), we notice that

e ](f L (P e (X) ) o0 (Xe) e (X,

d t
1

i,j=1"°

d t
# 3 [ Eregen | [ (05 = Y P00 (6 1 () o (X,,)]
i=1"%

We make the same transformation for the others expectations of the second term of (20), and
we divide in two parts the convergence study of (19).

As ¢ € C? (Rd,R), and ¢, ..., gr are bounded functions, there exists a finite constant m > 0
such that

m = sup ([|9¢]l s 1€l s 9ill oo s 8 =1, .. )
Part I. We state that

g ([ 20 (B 2 060 0) 00 () 0 ()|

— 0
n—o00

—Epn K/t L(PM) ¢ (X,) du> 91 (Xs,) -k (XSk)}

We first study the convergence of the term with the coefficients a;; and a;;.

t
i = ‘Epn ® Pn |:/ G/an (Xu - Yu) 8ij90 (Xu)gl (XS1) -Gk (X'Sk) du:|

t
_EP7L® pn |:/ aij (Xu - Yu) aij(p (Xu) a1 (Xsl) gk (Xsk) du:|

¢
< mk:+1EPn®Pn |:/ |a7] (Xuqu)faij (XuYu)|dU:|
. 2
Since ‘a?j (2)| < ai; (2)] < ¢|z["** and aj; (2) = aij (2) on |z > 2
¢
E1 S 2mk+1c/ Epn® pn ['Xu — Yu"y+2 ]I‘Xu_yu‘g%} du

As v+ 2 > 0, there finally exists a constant K > 0 such that

t
‘Epn@,pn { / 0l (X — V) 00 (Xa) g1 (Xou) i (Xop)

—_

K
nyt+2

IN

t
Epeg { [ 06 = V) (X 9 () e () du]
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We can use the same arguments for the term with the coeflicients b} and b;. Hence, we obtain

—

t
’EPW@ pn {/ b (X — Ya) 0i0 (Xu) 91 (Xs,) o9k (Xs,) du

B | b (X = Ya) B (Xa) 91 (Xe,) i (Xe) | < 25
Consequently, since v € (—1,0], we have proved,
o ([ 20 B2 00000 01 () 0 ()|
e |( L(PD e (X i) or (X3) e (43)]| =, 0
Part II. We now state that,
\Em [( / L) e (X du) 61 (Xa)) 00 (XS,J]
e ([ Lo 0t 1 () e 060 | = 0 @1

Like in the part I, we first study the term with the coefficients a;;, i.e. the convergence

t
Epng o [ / a5 (Xu = Ya) B0 (Xa) 61 (Xs,) gp (Xs) du]

50 (22)

n—oo

-Epgrp [/: aij (Xu = Yu) 035 (Xu) 91 (X, ) 98 (X)) du}

Let f:C([0,t],R?) x C ([0,t] ,RY) — R be the function defined by

t
(@) = @) = [ s (0 = 0) O (02) g () et (02,)
So, we can rewrite (22):

|Epng pn [f (X,Y)] = Epg p Lf (X,Y)]| = 0

n—oo

f is not a bounded function, hence we cannot just use the convergence in distribution to conclude.
We cut off the function f.
Let Ui be a bounded continuous function such that

i) Vp(z,y) = 1if [(2,y)| <R
0 (,y)] > 2R
i) el < 1
where [(z,y)| — sup( sup [zal, sup |yu)
0<u<t 0<u<t

and fgr: (z,y) — f(z,y) Vg (z,y). Hence, fr is a continuous bounded function, and then, using
the convergence in distribution, we have

|Epng pn [fR(X,Y)] = Epg p[fr(X,Y)]| — 0 (23)

n—oo

We now compare the expectations Epn g pn [f (X,Y)] and Epng pr [fr (X,Y)], as well as
Epgplf(X,Y)] and Epg p [fr (X,Y)]. We notice that:
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L [f(z,y) — fr(z. )] <2|f (@, 9)]]j@y)>r

2. |f (x,9)| < mFH [T ag; (20 — yu)| du

<miHle f{ e, — g du
2 2
< K (Supoguét ‘xu"y+ + SupOSugt |yu|“/+ )
So,

|Epng pr [f (X,Y)] = Epng pn [fR (X, Y)]]

< 2Epug po [|F (X, V)| Tx,y))>R)
+2 2
< 92K {EP" ® P [Oi?}it | Xo|” ]ISupOSuSt|Xu|>R} + Epng pn Lilqltgt | Xu|” HsupoSuSTYu>R:|

2 2
+Epn®pn |: sup ‘Y'u|’Y+ ]Isup0§1"St|Xu|>R:| +Epn®pn |: sup |Yvu"hL HSUPogugt|Yu|>R:|}

0<u<t 0<u<t

1
2
< 4K {Epn [ sup | X, |27+4} P ( sup |X,| > R) + Epn [ sup |Xu|7+2] P ( sup |X,| > R)}
0<u<t 0<u<t 0<u<t 0<u<t

Using Lemma 16 with k = 4, there exists a finite constant K, independent of n and of R, such
that

K
|Epng po [f (X,Y)] = Epng pn [fr (X, Y)]| < 7 (24)
As well, according to Remark 18, there exists a constant K’ such that
K/
|Epg plf(X,Y)]—Epgplfr(X,Y)]| < = (25)
Then, using convergence (23) and inequalities (24) and (25), we have finally proved

|Epng pr [f (X,Y)] = Epg p[f (X,Y)]| 2.0

To finish the proof of (21), we still have to check

Ergr [ by (X~ ¥) Oip (X) 1 (K1) o (Xo) a

t
—Fpg p U b (X — Ya) 30 (Xu) g1 (Xs,) -0 (Xsk)du] — 0
We define the function f : C ([0,#],R?) x C ([0,] ,RY) — R by
(z,y) — f x,y) / bi (T — Yu) Oip (T0) dugr (s,) .G (Ts,,)

As for the function f, we state that

—s 0
n—00

’EP"(X)P" {JE(X,Y)} —Epgr {f(X,Y)}

Conclusion: according to Parts I and II, we have proved the convergence (19). Then, thanks to
(18), we have

Epn [(M{" = M) g1 (Xs,) gi (Xsp)] — Ep[(My = M) g1 (Xs,) -9k (Xis,)]

n— o0
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Hence, since Epn [(M{ — M) g1 (Xs,) --.9k (Xs,)] = 0, we have, for any 0 < s < t,0<s; < ... <
Sk S S,

Ep [(Mt - MS) g1 (XS1) gk (Xsk)] =0

So, P satisfies the martingale problem (MP). ®
There are two main consequences of this theorem. The first one concerns the existence of a
solution to the Landau equation when v € (—1,0] :

Theorem 19 Let a and b be defined by (4) and (5) respectively. Let Py be a probability measure
with a finite moment of order 4. There exists a measure solution (P;),~, with initial data Py of
the Landau equation a

% 0 ()P, (dv) = = Z /Rd P; (dv) (/ Py (dvy) a;; (v—v*)> 0ijp (v)

z]l

+Z/ P (dv) (/ P, (dv.) b; (v—v*)> ditp (v)

when v € (=1,0] and h is a bounded continuous nonnegative function.

The second one states that the distribution P can be also interpreted as the distribution of a
weak solution of a nonlinear stochastic differential equation:

Theorem 20 Let the matriz a and the vector b be defined by (4) and (5) respectively. Let Xy be
a random variable with a finite moment of order 4. Then, there exists a weak solution X of the
nonlinear stochastic differential equation:

t 1 t pl
Xy = Xo +/ / o (X, =Y, (a)) . W (da,ds) +/ / b(Xs —Ys(a)dads (NSDE (o,b))
0o Jo 0o Jo
where o is a symmetric matriz such that oo = a.

Proof. Let P be a cluster point of (P™). Let X be a process with distribution P.
We firstly state the following lemma:

Lemma 21 The process
t
M, :Xt—Xo—/ b(X,, P.)ds
0

where b(X, Ps) = [b(X Ps (dy), is a continuous local P-martingale and its bracket is given
by

t
<Mi7Mj>t = /0 Qij (XS,PS)dS

where a;; (Xs, Ps) fa” P (dy) .

Proof. We denote by a Ab=min (a,b) and Bg = {z € R?: |z] < R}.

Using the functions ¢; € C? (Rd,R) such that ¢, (¥) = z; on Bpg, for i = 1,..,d, it is easy to
check that M is a continuous local P-martingale.
Using the functions ¢;; € Cj (R, R) such that ¢;; (x) = ;x; on Br, we state that the processes

¢
Niji = Xi,th,t*Xi,oXj,O*/ a;j (Xs, Ps)ds
0
t t
—/ bi (XS,PS)Xj’SdS—/ bj (XS,PS)Xi’SdS
0 0

20



are continuous local P-martingales, i,j € {1,..,d}.
Moreover,

t
Mi,th,t - / QA (Xs, Ps) ds = Nij,t - Xi,oMj,t - Xj,oMi,t
0
Then,

t
<Mi,an>t :/ Qj5 (X57R€)d5
0

[

According to Theorem I1I-10 in [4] (o is a symmetric matriz), we conclude that there are on an
extension of the probability space d continuous orthogonal martingale measures (Wkp ) with
intensity Ps (dy) ds on R x [0, 00) such that, for any k = 1...d

d t
M, = Z/ / o (Xs —y) Wy (ds, dy)
k=170 Rd

As the measure P; (dy) ds is deterministic, using Theorem II1-3 in [4], we deduce that the W}
are white noises and

Zt—X()-l-Z/ /azk y) W (ds, dy) // Py (dy) ds (26)

We can easily rewrite the equation (26) under the expression (NSDE (0,b)) (see the proof of
Remark 9). Consequently, we have proved the theorem. m

k=1..d
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