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Abstract

The subject of this paper is to estimate adaptively the common probability density
of n independent, identically distributed random variables. The estimation is done
at a fixed point x0 ∈ IR, over the density functions that belong to the Sobolev class
Wn(β, L). We consider the adaptive problem setup, where the regularity parameter β
is unknown and varies in a given set Bn. A sharp adaptive estimator is obtained, and
the explicit asymptotical constant, associated to its rate of convergence is found.
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1 Introduction

Consider n independent, identically distributed random variables X1, ..., Xn, having com-
mon unknown probability density f : IR→ [0,∞). We assume that f belongs to a Sobolev
class of densities.

For any L > 0 and β positive integer, we define the Sobolev class of densities W (β, L),
as the set of functions

W (β, L) = {f : IR→ [0,∞) :
∫
IR
f = 1,

∫
IR

(
f (β) (x)

)2
dx ≤ L2},

where f (β) will denote from now on the generalized derivative of order β of f . We may
define for an absolutely integrable function f : IR → IR its Fourier transform F(f)(x) =∫
IR f(y)e−ixy dy, for any x in IR. We adopt now a more general definition of the Sobolev

class, allowing non-integer values of β > 1/2

W (β, L) = {f : IR→ [0,∞) :
∫
IR
f = 1,

∫
IR
|F (f) (x)|2 |x|2β dx ≤ 2πL2}.

Let fn be an estimator of f based on the sample X1, ..., Xn and x0 a fixed point. The
performance of the estimator fn at the point x0 is measured by the maximal risk

R∗n,β(fn, ϕn,β) = sup
f∈W (β,L)

Ef

[
ϕ−qn,β |fn(x0)− f(x0)| q

]
, (1.1)
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where Ef (·) is the expectation with respect to the distribution Pf of X1, ..., Xn, when the
underlying probability density is f , ϕn,β is a given sequence of positive numbers and q > 0.

The sequence ϕn,β such that the maximal risk related to (1.1) remains positive for all
estimation procedures fn, asymptotically, and finite for some explicit estimator, asymptot-
ically, is called the optimal rate of convergence for the class W (β, L). Using the argument
of optimal recovery as in Donoho and Low [10], it is easy to find that the optimal pointwise

rate of convergence over the Sobolev class W (β, L) is ϕn,β = (1/n)
β−1/2

2β . This rate and
the estimator attaining this rate depend on the regularity β of the unknown density f .
Thus, it is difficult to implement such an estimator in practice. Our goal is to suggest
an adaptive estimator fn (x0) of f (x0), x0 ∈ IR, i.e. an estimator independent of the
regularity β of f , which is optimal in an exact asymptotic sense.

To define the notion of adaptive optimality we follow the minimax framework applied to
the problem of adaptivity by Lepskii [22]. He considered the Gaussian white noise model,
rather than density estimation. In this context, he introduced the notions of adaptive rate
of convergence and rate adaptive estimator.

Adaptive rates of convergence on different functional classes for the Gaussian white
noise model were obtained by Donoho, Johnstone, Kerkyacharian and Picard [8] (who
give a detailed overview of the results in adaptive estimation), by Lepski, Mammen and
Spokoiny [26], Goldenshluger and Nemirovski [13], Juditsky [19]. Most of these results re-
late to Besov classes of functions. The last three papers use the Lepski type of adaptation.

For the same framework of the Gaussian white noise model, exact adaptive results are
available for several cases. Exact adaptivity means that not only the rate but the best
asymptotic constant associated to it is attained by the proposed adaptive estimator. The
first result of this kind in the estimation in L2 norm on Sobolev periodic classes belongs
to Efromovich and Pinsker [12]. For further developments see Golubev [14], [15], Golubev
and Nussbaum [17]. Then Lepskii [22], Lepski and Spokoiny [27] obtained exact adaptive
results in L∞ and at a fixed point, respectively, on the Hölder classes with 0 < β ≤ 2 (see
also Lepskii [23] and [24]). Tsybakov [29] proved exact adaptive results for the Gaussian
white noise model both in L∞ and at a fixed point, on the Sobolev classes. Lepski and
Levit [25] gave exact adaptive results in pointwise estimation over a large scale of infinitely
differentiable functions.

Similar results on the adaptive rates of convergence exist in density estimation. We
refer here to Donoho, Johnstone, Kerkyacharian and Picard [9], Kerkyacharian, Picard and
Tribouley [21] and Juditsky [19] for the general setting of Besov classes and Lp norm, with
p <∞. They applied the wavelet shrinkage in order to construct the adaptive estimator.
Barron, Birgé and Massart [1], Birgé and Massart [3] propose different adaptive density
estimators constructed by the methods of penalization and prove their adaptivity in the
L2 norm. Devroye and Lugosi [7] obtained similar results for the L1 norm using an original
adaptation procedure.

The results on exact adaptive estimation of the density of i.i.d. random variables,
under the quadratic L2 risk, are due to Efromovich [11] and Golubev [16]. Efromovich
[11] considered estimation over Sobolev and more general ellipsoids of periodic densities
on [0, 1], Golubev [16] estimated a density in Sobolev classes over the real line.
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In this paper, we consider the problem of exact adaptive density estimation at a fixed
point on the Sobolev classes. Note that, similarly to the results of Lepskii [22], Brown and
Low [4] concerning the pointwise estimation in Gaussian white noise model, the adaptive

estimation with the optimal rate ϕn,β = (1/n)
β−1/2

2β is not possible and we have to nor-
malize the risk by the adaptive rate of convergence, which is logarithmically worse than
the optimal rate. In fact, the adaptive rate of convergence on a slightly modified Sobolev

class Wn(β, L), described below, is of the order (logn/n)
β−1/2

2β (see Butucea [5]). The main
result of this paper is to find the constant c (β, L, q, f (x0)) multiplying this rate of con-
vergence which allows to attain the exact asymptotics of the minimax adaptive risk. We
also construct explicitly the adaptive estimator that attains this exact asymptotics. This
extends a pointwise adaptive result of Tsybakov [29] to the problem of density estimation.

2 Results

Our results concern the exact adaptive estimation, at a fixed point x0 ∈ IR, over the
Sobolev class of densities, with regularity β ∈ Bn, for some set Bn. We introduce the
following class of Sobolev densities

Wn (β, L) = {f ∈W (β, L) : f (x0) ≥ ρn} ,

where ρn is a sequence of positive real numbers that satisfies

lim
n→∞

ρn = 0 and lim inf
n→∞

(ρn log n) > 0. (2.1)

As we see later, by considering the truncated class of functions Wn (β, L) instead of
W (β, L), we change nothing to the estimation problem if the density f remains fixed
as n→∞. Nevertheless, we need to avoid the possible case of a density f that varies with
n such that f (x0)→ 0 too fast as n→∞.

An alternative possibility is to consider that our density belongs to a local Sobolev
class, where the smoothness on a neighborhood around the estimation point is quantified.
In this context only the adaptive rate of convergence is maintained by the estimation
approach described here and not the exact constant normalization.

Consider now the following maximal risk over Wn (β, L) at fixed x0, for q > 0

Rn,β(fn, ψn,β) = sup
f∈Wn(β,L)

Ef

[
ψ−qn,β |fn(x0)− f(x0)| q

]
. (2.2)

We assume that the set Bn of regularities is a discrete set, Bn = {β1, ...,βNn}, where
1/2 < β1 < . . . < βNn < +∞ are positive integers. Moreover, we suppose that β1 > 1/2 is
fixed, while lim

n→∞
βNn = +∞ and {Nn}n≥1 is a nondecreasing sequence of positive integers.

We define ∆n = max
i=1...Nn−1

|βi+1 − βi| and assume that it satisfies

lim sup
n→∞

∆n < +∞ (2.3)

together with

lim
n→∞

∆n log n
β2
Nn

log log n
=∞. (2.4)
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Similarly to Lepski’s result, we may as well consider a bounded set of regularities [a, b] ≤
(1/2,∞). This changes nothing to the adaptive rate of convergence, but the length of
the interval should appear in the constant. Our approach is, in some sense, more general
because it considers a larger union of classes without loss in the rate. In particular,
conditions (2.3) and (2.4) entail

log n
βNn

→
n→∞

+∞ (2.5)(
βNn
log n

)1/2

log βNn →n→∞ 0 (2.6)(
βNn
log n

)1/2

log
1

∆n
→

n→∞
0. (2.7)

This is proved in the beginning of Section 3.
The following definition is a modification for the density problem of the adaptive

optimality introduced by Lepskii [22] (see also Tsybakov [29]).

Definition 2.1 The sequence ψn,β is an adaptive rate of convergence over the set
Bn, if:

1. there exists an estimator f∗n, independent of β over Bn, which is called rate adaptive
estimator, such that

lim sup
n→∞

sup
β∈Bn

Rn,β (f∗n, ψn,β) <∞, (2.8)

2. if there exists another sequence of positive real numbers ρn,β and an estimator f∗∗n
such that

lim sup
n→∞

sup
β∈Bn

Rn,β (f∗∗n , ρn,β) <∞

and, at some β′ in Bn,
ρn,β′
ψn,β′

→
n→∞

0, then there is another β′′ in Bn such that
ρn,β′
ψn,β′

· ρn,β′′ψn,β′′
→

n→∞
+∞.

Note that condition (2.8) introduces a wide class of rates. We choose between those
rates by a criterion of uniformity over the set Bn, expressed in the second part of Defini-
tion 2.1. If some other rate satisfies a condition similar to (2.8) and if this rate is faster
at some point β′ then the loss at some other point β′′ has to be infinitely greater for large
sample sizes n.

Let us denote B− = Bn \ {βNn} and

ψn,β =

 c
(

logn
n

)β−1/2
2β , for β ∈ B−(

1
n

)β−1/2
2β , for β = βNn

, (2.9)

where the constant c is function of β, L, q and f (x0), c = c (β, L, q, f (x0)) > 0 and
satisfies

0 < lim inf
β→∞

c (β, L, q, f (x0))
√
β ≤ lim sup

β→∞
c (β, L, q, f (x0))

√
β <∞.
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Adaptivity in β over the set Bn, in the pointwise estimation, causes the loss of a log n-
factor within the adaptive rate with respect to the optimal rate of convergence. Such a loss
was not remarked in the setups of L2 or sup-norm risk measures. It is shown in Butucea
[5] that the adaptive rate of convergence of the maximal risk defined in (2.2) over the set
Bn is ψn,β in (2.9) and for the rate adaptive estimator described in the next subsection.
We see in this paper that the logarithmic factor appears as soon as the set Bn has at least
two distinct values.

Let us stress the fact that we actually attain the optimal rate of convergence at the
last point of the set Bn. This is mainly due to the adaptive procedure described below
which tends to overestimate the true regularity β. This fact is explained and proved in
Section 4.2.

2.1 Exact adaptive estimation procedure

The estimation procedure contains three steps. First, we consider a preliminary estimator
f̂n (x0) of f (x0), as the following kernel estimator

f̂n (x0) =
1
nhn

n∑
i=1

K

(
Xi − x
hn

)
, (2.10)

where K is a bounded, positive kernel, such that
∫
|u| |K (u)| du <∞, and the bandwidth

is hn > 0. The bandwidth satisfies lim
n→∞

hn = 0 and lim
n→∞

nhn = ∞, which guarantee

that f̂n (x0) is a consistent estimator. This preliminary estimator does not need to be
particularly well performing, but for technical reasons in Lemma 3.2 it must not be too
slow. Hence the following conditions on the bandwidth, that are not very restrictive:

lim sup
n→∞

hnn
α0 <∞, (2.11)

for some fixed 0 < α0 < 1/2 and

lim
n→∞

nh2
n

(log n)3 =∞. (2.12)

We truncate this estimator at ρn that tends to 0 when n→∞ such that (2.1) holds and
get ρ̂n (x0) = max

{
f̂n (x0) , ρn

}
.

The second step consists in defining a family of kernel estimators, whose bandwidths
contain the preliminary estimator as follows

ĥn,β = kβ

(
ρ̂n (x0) logn

n

) 1
2β

, where β ∈ B− and kβ =
(

q

2β (2β − 1)L2

) 1
2β

ĥn,βNn =
(

1
n

) 1
2βNn , if β = βNn .

For β > 1/2, define a kernel Kβ by the expressions

Kβ (x) =
1

2π

∫
IR

exp (ixu)

1 + |u|2β
du =

1
π

∫ ∞
0

cos (xu)

1 + |u|2β
du. (2.13)
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Define the kernel estimator depending on β

f̂n,β (x0) =
1

nĥn,β

n∑
i=1

Kβ

(
Xi − x0

ĥn,β

)
.

At the third step, we use a version of Lepski’s method to approximate β by an estimator
β̂ and to substitute it in the expression of the kernel estimator f̂n,β (x0). For any β > 1/2,
we define

b2β =
1

2π

∫
IR

|u|2β(
1 + |u|2β

)2du, ν2
β =

1
2π

∫
IR

1(
1 + |u|2β

)2du.

By simple calculation, we can prove that ν2
β = (2β − 1) b2β. We consider the sequence

η̂n,β = νβ

√
q

2βkβ

(
ρ̂n (x0) logn

n

)β−1/2
2β

and the estimator of β defined as

β̂ = max
{
β ∈ Bn :

∣∣∣f̂n,γ(x0)− f̂n,β(x0)
∣∣∣ ≤ η̂n,γ , ∀γ ∈ Bn, γ ≤ β} .

Finally, we replace β by β̂ in the kernel estimator f̂n,β (x0) in order to get the estimator

f∗n (x0) = f̂n,β̂ (x0) . (2.14)

This estimator will be shown to be exact adaptive i.e. to attain the adaptive rate of
convergence in our setup, up to a constant, explicitly given.

The key point in this construction is Lepski’s algorithm in the third step for the eval-
uation of the smoothness β of the underlying density, at each point x0. The same method
was employed by Tsybakov [29] in the Gaussian white noise model but for orthogonal
series estimators of the signal function. We introduce here kernel estimators which are
more suitable for density estimation and are largely used in practice. Moreover, we provide
optimal kernel (in the sense of exact adaptivity) and bandwidth expression of the adaptive
estimator.

For a simulation study of the behavior of this estimator we refer to Butucea [6]. We
have implemented the described adaptive estimator and tested it over ten different densi-
ties. We have considered a set B = {1, . . . , 6} and L = 10. As a preliminary estimator
we used a Gaussian kernel estimator, with a rather large bandwidth. We came to the
conclusion that the adaptive estimator is particularly robust with respect to this prelimi-
nary estimator. Also, the choice of L is not of crucial importance. Choosing L adaptively
reduces to taking a finer grid on β. The local sharp adaptive estimator behaves uniformly
well for many different densities in the described class.

Finally, a major difference with respect to the nonparametric regression or Gaussian
white noise model, as considered in Lepski and Spokoiny [27], Tsybakov [29], is the fact
that the density model is heteroscedastic. This means more precisely that the variance
of the kernel estimator is proportional to f (x0), the value of the unknown density at the
estimation point. In consequence, this value appears into our exact normalization and
optimal estimators and hence the use of a preliminary estimator of f (x0), which has to
be free of unknown values f (x0) and β.
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2.2 Statement of results

Let c = c (β, L, q, f (x0)) be a positive constant defined by

c (β, L, q, f (x0)) = bβL
1

2β (2β)
β+1/2

2β

(
qf (x0)
2β − 1

)β−1/2
2β

. (2.15)

Theorem 2.2 The estimator f∗n (x0) defined by (2.14) is rate adaptive estimator and the
adaptive rate ψn,β associated to the constant c (β, L, q, f (x0)) in (2.15) is such that

lim sup
n→∞

sup
β∈B−

Rn,β(f∗n, ψn,β) ≤ 1 (2.16)

and

lim inf
n→∞

inf
fn

sup
β∈B−

Rn,β(fn, ψn,β) ≥ 1. (2.17)

Moreover,

lim sup
n→∞

Rn,βNn (f∗n, ψn,βNn ) <∞. (2.18)

This exact constant is obviously similar to the case of Gaussian white noise model in
Tsybakov [29]. Nevertheless, as we stressed in our introduction very few results of this
type are known in the density estimation model, which is though a main topic in the
statistical literature. Moreover, the adaptive setup in the pointwise estimation is more
interesting, by the fact that the rates are significantly different (by a log n factor) with
respect to the minimax problem where β is fixed and (supposed) known.

The pointwise estimation allows more flexibility than the global adaptation and, in
particular, the bandwidth and the kernel can be adjusted locally.

Our theorem states that ψn,β and f∗n satisfy the exact adaptive problem on B−:

lim
n→∞

inf
fn

sup
β∈B−

Rn,β(fn, ψn,β) = lim
n→∞

sup
β∈B−

Rn,β(f∗n, ψn,β) = 1

split in two inequalities (2.16) - also called upper bound and (2.17) - known as the lower
bound. The same procedure attains the optimal rate of convergence at the last point of
the set, βNn .

The proof of the upper bounds (2.16) and (2.18) is given in Section 5. The different
tools and techniques that are used here are described in Sections 3 and 4. In Section 3,
we study the preliminary estimator and give exact bounds for the bias and the variance of
the optimal kernel estimator fn,β. Section 4 contains the main tools in our proof, stated
as theorems.

On one hand, in order to bound uniform risks of the adaptive estimator both expo-
nential and uniform exponential inequalities are needed (Bernstein’s and, respectively, van
de Geer’s inequalities). An original technique is used in Theorem 4.6, where we split the
integration domain of the risk and treat each case differently. A global entropy reasoning
or chaining would not provide us the right constants. On the other hand, it is necessary
to study the estimator of β and to quantify exactly the probability that β̂ is strictly less
than the true β. We see that this event happens with exponentially small probability.

Section 6 gives a constructive proof of the lower bounds. Namely, the subexperiments
that are difficult enough and lead to the exact lower bounds are given.
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3 Auxiliary results

From now on o (1) denotes any sequence that tends to 0 when n → ∞, O (1) and di,
i = 0, 1, 2, . . . are positive constants, depending eventually on fixed, positive β1, q and L,
while ci, i = 1, 2, . . . are absolute positive constants.

Proof of (2.5) to (2.7) We apply (2.3) and (2.4) and we pass to limits:

log n
βNn

=
∆n log n

β2
Nn

log log n
βNn log log n

∆n
→

n→∞
∞.

Next, for n large enough, βNn log2 βNn ≤ β2
Nn

log βNn ≤ β2
Nn

log log n and then

(
βNn
log n

)1/2

log βNn ≤

(
β2
Nn

log log n
log n

)1/2

≤

(
∆n

β2
Nn

log log n
∆n log n

)1/2

→
n→∞

0.

Finally, we remark that for n large enough, 1
∆n
≤ log n and then log 1

∆n
≤ log log n. We

also have log 1
∆n
≤ 1

∆n
and we write log 1

∆n
≤
(

log logn
∆n

)1/2
.Then

(
βNn
log n

)1/2

log
1

∆n
≤

(
1
βNn

β2
Nn

log log n
∆n log n

)1/2

→
n→∞

0.

2

Let us remark that the kernel Kβ in (2.13) has the Fourier transform

F (Kβ) (u) =
1

1 + |u|2β

and by Plancherel formula ‖Kβ‖22 = 1
2π ‖F (Kβ)‖22 = ν2

β.

Lemma 3.1 There exist positive constants Kmax, kmax, kmin, νmax, νmin and vmax depen-
ding only on fixed β1, q and L such that:

1. ‖Kβ‖∞ ≤ Kmax, kmin ≤ kβ ≤ kmax and νmin ≤ νβ ≤ νmax, for any β in Bn;

2. max
β∈B

sup
f∈Wn(β,L)

‖f‖∞ ≤ vmax.

Proof. 1.We shall prove only the first statement, the rest being an easy consequence
of the definition of kβ and νβ . We have for 2β1 > 1:

‖Kβ‖∞ ≤
1

2π

(
1 +

∫
|u|>1

du

1 + |u|2β1

)
= Kmax (β1) < +∞.

2. For β > 1/2, f in Wn (β, L) is a continuous function and

|f (x)| =
∣∣∣∣ 1
2π

∫
IR
F(f)(y)eixy dy

∣∣∣∣ ≤ νβ√
2π

(∫
IR
|F(f)(y)|2

(
1 + |y|β

)2
dy

)1/2

.
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We finish the proof by writing for F(f) continuous that∫
IR
|F(f)(y)|2

(
1 + |y|β

)2
dy ≤ 4

(∫
|y|≤1

|F(f)(y)|2 dy +
∫
|y|>1

|F(f)(y)|2 |y|2β dy

)

which is finite. 2

From now on, we suppose that β is fixed, β ∈ B, f belongs to the class Wn (β, L) and
γ is also in B such that 1/2 < γ ≤ β. Let us define the nonrandom sequences

hn,γ = kγ

(
f (x0) logn

n

) 1
2γ

and ηn,γ = νγ

√
q

2γkγ

(
f (x0) logn

n

) γ−1/2
2γ

.

Let δn = 1/ log n and let 1/2 < β0 ≤ 1. Then (2.1), (2.11) and (2.12) entail:

n (hnδnρn)2

log n
→∞ and

h
β0−1/2
n

δnρn
→ 0. (3.1)

We put

γ̃ =
{
β, when γ = β or γ < β < 2γ
γ + β1+1/2

2 , when 2γ ≤ β
, (3.2)

which satisfies γ̃ < 2γ and γ < γ̃ ≤ β. We define the random event

An,γ =


∣∣∣∣∣∣
(
ĥn,γ
hn,γ

)γ̃−1/2

− 1

∣∣∣∣∣∣ ≤ δn


and the corresponding nonrandom set

Hn,γ =

{
h :

∣∣∣∣∣
(

h

hn,γ

)γ̃−1/2

− 1

∣∣∣∣∣ ≤ δn
}
.

The following result concerns the preliminary kernel estimator f̂n (x0) in (2.10), having
the bandwidth hn that satisfies conditions (2.11) and (2.12) and a bounded, kernel K,
such that

∫
|u| |K (u)| du <∞.

Lemma 3.2 If An,γ denotes the complementary set of An,γ, then for sufficiently small,
fixed α > 0 :

Pf
[
An,γ

]
≤ 2 exp

{
−n ((1− α)hnδnρn)2

2 ‖K‖2∞

}
= o (1) .

Proof. We use the facts that |xα − 1| ≤ |x− 1| for any 0 < α < 1, x > 0 and
|max {x, ρn} −max {y, ρn}| ≤ |x− y| for any fixed n and x, y > 0. For α = γ̃−1/2

2γ ≤ 1− 1
4β1
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and f (x0) ≥ ρn, we have

Pf
[
An,γ

]
= Pf

∣∣∣∣∣∣
(
ρ̂n (x0)
f (x0)

) γ̃−1/2
2γ

− 1

∣∣∣∣∣∣ ≥ δn


≤ Pf
[∣∣∣f̂n (x0)− f (x0)

∣∣∣ ≥ δnρn]
≤ Pf

[∣∣∣f̂n (x0)− Ef f̂n (x0)
∣∣∣+
∣∣∣Ef f̂n (x0)− f (x0)

∣∣∣ ≥ δnρn] .
By embedding theorem 15.1 in Besov, Il’in, Nikol’skii 1978, [2] we deduce that f which
belongs to Wn (β, L) belongs also to Wn (β0, L) with β0 = min{β1, 1}, which is included
in the Hölder class H (β0 − 1/2, L0), L0 > 0. This means f verifies:

|f(x)− f(y)| ≤ L0 |x− y|β0−1/2 .

Let us consider a kernel K such that
∫
|u| |K (u)| du <∞. Then, we have:∣∣∣Ef f̂n (x0)− f (x0)

∣∣∣ ≤ ∫ |K(x)| |f(x0 + hnx)− f(x0)| dx

≤ L0h
β0−1/2
n

(∫
|x|≤1

|K(x)| |x|β0−1/2 dx+
∫
|x|>1

|K(x)| |x| dx

)
≤ c (L0, β0)hβ0−1/2

n ,

with a constant c (L0, β0) > 0. The last term of the inequality above is equal to o(δnρn)
by (3.1). We obtain, for fixed, small α > 0

Pf
[
An,γ

]
≤ Pf

[∣∣∣f̂n (x0)− Ef f̂n (x0)
∣∣∣ ≥ (1− α) δnρn

]
.

We apply Hoeffding’s inequality for the i.i.d. variables K ((Xi − x0) /hn), bounded by
‖K‖∞ <∞:

Pf

[∣∣∣∣∣ 1n
n∑
i=1

(
K

(
Xi − x0

hn

)
− EfK

(
Xi − x0

hn

))∣∣∣∣∣ ≥ z
]
≤ 2 exp

{
− nz2

2 ‖K‖2∞

}

for any z ≥ 0, f ∈ Wn (β, L). It suffices to take z = (1− α)hnδnρn in order to get the
stated result. Moreover, n (hnδnρn)2 → ∞ with n, by (3.1), then the right-hand side in
the lemma is o (1). 2

Denote fn,γ (x0, h) = 1
nh

∑n
i=1Kγ

(
Xi−x0
h

)
the kernel estimator of f (x0), having kernel

Kγ and bandwidth h in the set Hn,γ . In particular, we denote fn,γ (x0) = fn,γ (x0, hn,γ).
We study in the following this kernel estimator using the classical decomposition

|fn,γ (x0, h)− f (x0)| ≤ Bn,γ (h) + Zn,γ (h) ,

where Bn,γ (h) = |Effn,γ (x0, h)− f (x0)| is the bias of the estimator fn,γ (x0, h) of f (x0),
for a bandwidth h ∈ Hn,γ and Zn,γ (h) = |fn,γ (x0, h)− Effn,γ (x0, h)| its stochastic term.
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Lemma 3.3 For any h in Hn,γ, f ∈ Wn (β, L) and γ, β in BNn such that 1/2 < γ ≤ β,

let L̃ > 0 be some constant, bn,γ (h) =

{
Lbβh

β− 1
2 , γ = β

L̃νmaxh
γ̃− 1

2 , γ < β
, where γ̃ is defined by

(3.2) and s2
n,γ (h) = f (x0) ν2

γ/ (nh). (In particular, we denote bn,γ = bn,γ (hn,γ) and
sn,γ = sn,γ (hn,γ)). We have

1. Bn,γ (h) ≤ bn,γ (h);

2. Ef
[
Z2
n,γ (h)

]
≤ s2

n,γ (h) (1 + o (1)), where o (1) →
n→∞

0 uniformly in γ and β.

Proof. 1) We have F
(

1
hKγ

( ·−x0
h

))
(x) = eixx0F (Kγ) (hx). Then

Bn,γ (h) =
1

2π

∣∣∣∣∫
IR
F (f) (x) eixx0 [F (Kγ) (hx)− 1] dx

∣∣∣∣
≤ 1

2π

∫
IR
|F (f) (x)| |hx|

2γ

1 + |hx|2γ
dx

≤ 1√
2π

(∫
IR

1
2π
|F (f) (x)|2 |x|2γ̃ dx

)1/2

∫
IR

h2γ̃ |hx|2(2γ−γ̃) dx(
1 + |hx|2γ

)2


1/2

.

by the Cauchy-Schwarz inequality.
a) When γ = β we have γ̃ = β and

Bn,β (h) ≤ Lhβ−
1
2

√
2π

∫
IR

|u|2β(
1 + |u|2β

)2du


1/2

= bn,β (h) .

b) When γ < β, we have γ̃ such that γ < γ̃ < 2γ and γ̃ ≤ β. Then f ∈ Wn (β, L) ⊆
Wn

(
γ̃, L̃

)
, for some fixed constant L̃ > 0, by embedding theorem of Sobolev spaces. We

get

Bn,γ (h) ≤ L̃hγ̃−
1
2

√
2π

∫
IR

|u|2(2γ−γ̃)(
1 + |u|2γ

)2du


1/2

≤ bn,γ (h) .

2) We have Ef
[
Z2
n,γ (h)

]
≤ 1

nh

∫
1
hK

2
γ

(
x−x0
h

)
f (x) dx and we conclude by Bochner’s

lemma applied to continuous f and kernel Kγ , that∫
1
h
K2
γ

(
x− x0

h

)
f (x) dx ≤ f (x0) ‖Kγ‖22 (1 + o (1)) .

2

We give rough non-random upper bounds concerning the kernel estimator f̂n,γ (x0)
with bandwidth ĥn,γ depending on random data X1, . . . , Xn.
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Lemma 3.4 For γ < β, there exist constants d0 and d1, such that, a.s.

sup
β∈B

sup
f∈Wn(β,L)

ψ−qn,β

(
η̂n,β +

∣∣∣f̂n,β (x0)− f (x0)
∣∣∣)q ≤ 2d0n

d1

and

sup
β∈B

sup
f∈Wn(β,L)

ψ−qn,β

∣∣∣f̂n,γ (x0)− f (x0)
∣∣∣q ≤ d0n

d1.

Proof. Let us bound at first the preliminary estimator
∣∣∣f̂n (x0)

∣∣∣ ≤ ‖K0‖∞ /hn. Then,
a.s. ∣∣∣f̂n,γ (x0)

∣∣∣ ≤ ‖Kγ‖∞
ĥn,γ

≤ Kmax

kmin

(
n

ρ̂n (x0) logn

) 1
2γ

≤ O (1)n
1

2β1 .

At last, for β in B−

ψ−1
n,β ≤

√
2β − 1

2βLνβk
β
β

√
kβ

(
n

f (x0) logn

) 1
2
− 1

4β

≤ O (1)
√
βNnn

1
2
− 1

4β1

and the same holds for β = βNn , ψ−1
n,βNn

≤ O (1)n1/2−1/(4β1).
We may conclude that a.s., for any 1/2 < γ ≤ β:

ψ−1
n,β

∣∣∣f̂n,γ (x0)− f (x0)
∣∣∣ ≤ O (1)

√
βNn

(
n

1
2

+ 1
4β1 + n

1
2
− 1

4β1

)
≤ d0n

d1 ,

since βNn = o(1). Similarly,

η̂n,β
ψn,β

=
ηn,β
ψn,β

·
(
ρ̂n (x0)
f (x0)

) (β−1/2)
2β

≤
(

1− 1
2β

)(
ρ̂n
ρn

) 1
2
− 1

4β

≤ d0n
d1 .

2

Let us choose a convenient sequence which shall appear in the proof of the upper
bounds:

τn,γ = sn,γ

[[
q

2

(
1
γ
− 1
β

)
log n

] 1
2

+
(

log n
βNn

) 1
4

]
, for any γ ≤ β.

Remark that τn,β/sn,β = (logn/βNn)1/4 →∞, when n→∞.

Lemma 3.5 1. The following inequalities hold for any β ∈ Bn and f ∈Wn (β, L)

sn,β
ψn,β

≤
√

2
q

(
βNn
log n

)1/2

,
τn,β
ψn,β

≤
√

2
q

(
βNn
log n

) 1
4

,(
log n
n

)∆n
β2
N ≤ exp

{
− ∆n log n
β2
N log log n

}
→

n→∞
0.

2. If γ < β are in Bn we have

sup
f∈Wn(β,L)

bqn,γ + τ qn,γ
ψqn,β

≤ O (1) (log n)q/2 nq
(

1
4γ
− 1

4β

)
.

12



Proof. 1. It suffices to note that η2
n,β =

(
2β−1

2β

)2
ψ2
n,β = q

2β s
2
n,β log n and use (2.4) for

the limit.
2. First, if β is in B−, we have

ψ−1
n,β ≤ O (1)

√
βN

(
n

f (x0) logn

) 1
2
− 1

4β

≤ O (1)
√

log n
(

n

f (x0) logn

) 1
2
− 1

4β

.

We see as well that

τn,γ ≤ sn,γ

√
q log n

2γ
(1 + o (1)) ≤ O (1)

(
f (x0) logn

n

) 1
2
− 1

4γ

and also

bn,γ ≤ cbh
γ̃− 1

2
n,γ ≤ O (1)

(
f (x0) logn

n

) 1
2
− 1

4γ

as γ ≤ γ̃ < 2γ and kmin ≤ kγ ≤ kmax. Moreover, f (x0) logn ≥ ρn log n > 0, then

sup
f∈Wn(β,L)

bqn,γ + τ qn,γ
ψqn,β

≤ O (1) (log n)q/2 nq
(

1
4γ
− 1

4β

)
.

If β = βNn , the result is immediate. 2

4 Exponential inequalities and applications

The key lemmas in the proof of the upper bounds are given here and the results as we
apply them in the next section are stated as theorems.

4.1 Exponential bounds

The next proposition recalls two inequalities on empirical processes. Denote the empirical
distribution associated to the i.i.d. observations X1, . . . , Xn of common law P by Pn =
1/n

∑n
i=1 δXi .

Proposition 4.1 Let us consider a class of functions K = {fh (·) / h ∈ H} satisfying

sup
h∈H
‖fh‖∞ ≤ K and sup

h∈H
‖fh‖L2(P ) ≤M

for some positive K and M .
Then for all u > 0 and for fixed h ∈ H

Pf

[∣∣∣∣∫ fhd (Pn − P )
∣∣∣∣ ≥ u] ≤ 2 exp

{
− nu2

2 (M2 + 2uK)

}
(Bernstein’s Inequality see Pollard [28]) ;

Moreover, if

u ≤ min
{

8M,
2C1M

2

K

}
and u ≥ C0√

n

∫ M

u
26

max
{
H

1/2
B (K, x) , 1

}
dx,

13



where HB denotes the entropy with bracketing with respect to the L2-norm of a class of
functions, then there exists some a < 1/2 such that

Pf

[
sup
h∈H

∣∣∣∣∫ fhd (Pn − P )
∣∣∣∣ ≥ u] ≤ 8 exp

{
−anu

2

M2

}
.

(Van de Geer [30]).

One can prove without difficulty that there exists a positive constant d2 = 1/ (β1 − 1/2),
such that:

Hn,γ ⊆
{
h :
∣∣∣∣ h

hn,γ
− 1
∣∣∣∣ ≤ d2δn

}
= Hn,γ . (4.1)

We shall apply the previous results, successively, to two classes of measurable functions,
for observations having distribution Pf , corresponding to the probability density f ∈
Wn (β, L) and empirical distribution Pn. Let us take on one hand

K =
{
Kγ,h (·) =

1
h
Kγ

(
· − x0

h

)
: h ∈ Hn,γ

}
.

Then

sup
h∈Hn,γ

‖Kγ,h‖∞ ≤
‖Kγ‖∞
hn,γ

≤ Kmax

hn,γ

and by Lemma 3.3

sup
h∈Hn,γ

‖Kγ,h‖L2(Pf) ≤
νγ
√
f (x0)√
hn,γ

= sn,γ
√
n.

For different h1, h2 in Hn,γ we have

‖Kγ,h1 −Kγ,h2‖L2(Pf) ≤ 1√
2π
‖F (Kγ) (h1·)−F (Kγ) (h2·)‖2

≤ 1√
2π

∫
∣∣∣h2γ

1 − h
2γ
2

∣∣∣2 |y|4γ dy(
1 + |h1y|2γ

)2 (
1 + |h2y|2γ

)2


1/2

≤ O (1)√
hn,γ

∣∣∣∣∣1−
(
h1

h2

)2γ
∣∣∣∣∣ .

Then, we may write that the ε-entropy with bracketing of the class K with respect to the
L2 (Pf ) norm is: HB (K, ε) ≤ O

(
log 1

ε + log n
)
. Thus

C0√
n

∫ M

0
max

(
H

1/2
B (K, x) , 1

)
dx ≤M

√
log n
n

. (4.2)

On the other hand, consider the following class of measurable functions

K (hn,γ) =
{
Kγ,h (·)−Kγ,hn,γ (·) : h ∈ Hn,γ

}
14



for which

sup
h∈Hn,γ

∥∥Kγ,h −Kγ,hn,γ

∥∥
∞ ≤ sup

h∈Hn,γ
sup
x

1√
2π

∣∣∣∣∫ F (Kγ,h −Kγ,hn,γ

)
(y) eixydy

∣∣∣∣
≤ sup

h∈Hn,γ

1√
2π

∫ ∣∣∣h2γ − h2γ
n,γ

∣∣∣ |y|2γ dy(
1 + |hy|2γ

)(
1 + |hn,γy|2γ

)
≤ O (1)

hn,γ

∣∣∣∣∣1−
(

h

hn,γ

)2γ
∣∣∣∣∣ ≤ O (1)

βNδn
hn,γ

and

sup
h∈Hn,γ

∥∥Kγ,h −Kγ,hn,γ

∥∥
L2(Pf) ≤ sup

h∈Hn,γ

O (1)√
hn,γ

∣∣∣∣∣1−
(

h

hn,γ

)2γ
∣∣∣∣∣

≤ O (1)
βNδn√
hn,γ

.

It is easy to see, that (4.2) still holds for this class.

Lemma 4.2 For the kernel estimator fn,γ (x0, h), for any fixed x0 and for u ≤ c1sn,γ
√

log n
(c1 > 0, an absolute constant), there exists δn0 > 0 small enough, independent of γ, such
that:

Pf [|Zn,γ (hn,γ)| ≥ u] ≤ 2 exp
{
− u2

2s2
n,γ

(1− δn0)
}

.

Proof. Write Zn,γ (h) =
∫
Kγ,hd (Pn − Pf ) and apply Bernstein’s inequality of Propo-

sition 4.1 for K = Kmax/hn,γ and M = sn,γ
√
n to get

Pf [|Zn,γ (hn,γ)| ≥ u] ≤ 2 exp

{
− u2

2s2
n,γ

(
1 + 2uKmax/ν2

γf (x0)
)} .

We remark that for u ≤ c1sn,γ
√

log n (c1 > 0) we have

2uKmax

ν2
γf (x0)

≤ 2c1Kmax
√

log n
νγ
√
f (x0)

√
nhn,γ

≤ O (1)
(
ρn log n

n

) 1
2
− 1

4γ

= o (1)

and thus we can find a δn0 > 0 small enough, such that(
1 +

2uKmax

ν2
γf (x0)

)
≤ 1

1− δn0

which we can replace in the exponential inequality above in order to get the stated lemma.
2
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Lemma 4.3 For u, such that τn,γ ≤ u ≤ c1sn,γ
√

log n, there exist a constant d3 > 0 and
δn1 > 0 sufficiently small, independent of γ, such that

Pf

[
sup

h∈Hn,γ
|Zn,γ (h)| ≥ u

]
≤ d3 exp

{
−u

2 (1− δn1)2

2s2
n,γ

(1− δn0)

}
,

for n large enough, where δn0 is the sequence in Lemma 4.2.

Proof. Let us consider the sequence δn1 = βNnδn
√
βNn log n →

n→∞
0. We have

Pf

[
sup

h∈Hn,γ
|Zn,γ (h)| ≥ u

]
≤ Pf [|Zn,γ (hn,γ)| ≥ u (1− δn1)]

+Pf

[
sup

h∈Hn,γ
|Zn,γ (h)− Zn,γ (hn,γ)| ≥ uδn1

]
.

We apply Lemma 4.2 to the first term on the right-hand side of the previous inequality.
We see that u (1− δn1) ≤ u ≤ c1sn,γ

√
log n and thus there exist a sufficiently small δn0 > 0

such that:

Pf [|Zn,γ (hn,γ)| ≥ u (1− δn1)] ≤ 2 exp

{
−u

2 (1− δn1)2

2s2
n,γ

(1− δn0)

}
.

For the second term we first see that

Zn,γ (h)− Zn,γ (hn,γ) =
∫ (

Kγ,h −Kγ,hn,γ

)
d (Pn − Pf ) .

Then we apply Van de Geer’s inequality from Proposition 4.1, where K = βNnδn/hn,γ and
M = βNnδn/

√
hn,γ

Pf

[
sup

h∈Hn,γ
|Zn,γ (h)− Zn,γ (hn,γ)| ≥ uδn1

]
≤ 8 exp

{
−anhn,γ

(uδn1)2

(βNnδn)2

}

for all u in
[
τn,γ , c1sn,γ

√
log n

]
. Indeed, min

{
8M, 2C1M2

K

}
= O (1)βNnδn,

C0√
n

∫ M

0
max

{
H

1/2
B (K, x) , 1

}
dx ≤ O (1)

βNnδn√
nhn,γ

√
log n

and [
τn,γδn1, c1δn1sn,γ

√
log n

]
⊆

[
βNnδn√
nhn,γ

√
log n, βNnδn

]
,

for n large enough. By summing the two terms again, we get

Pf

[
sup

h∈Hn,γ
|Zn,γ (h)| ≥ u

]
≤ 2 exp

{
−u

2 (1− δn1)2

2s2
n,γ

(1− δn0)

}

+8 exp

{
−anhn,γ

(uδn1)2

(βNnδn)2

}

≤ 8 (1 + o (1)) exp

{
−u

2 (1− δn1)2

2s2
n,γ

(1− δn0)

}
.

2
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Theorem 4.4 We have

sup
β∈Bn

sup
f∈Wn(β,L)

Pf

[
sup

h∈Hn,β
|Zn,β (h)| ≥ τn,β

]
→

n→∞
0.

Proof. Let us apply the Lemma 4.3, for γ = β, u = τn,β and δn2 →
n→∞

0 such that

(1− δn1)2 (1− δn0) = 1− δn2

Pf

[
sup

h∈Hn,β
|Zn,β (h)| ≥ τn,β

]
≤ d3 exp

{
−
τ2
n,β

2s2
n,β

(1− δn2)

}

≤ d3 exp

{
−1

2

(
log n
βNn

) 1
2

(1− δn2)

}
and this sequence tends to 0, by Lemma 3.5, uniformly in f ∈Wn (β, L) and β ∈ Bn. 2

Lemma 4.5 Let c2 > 0 be a constant such that c2 ≥ c1sn,γ
√

log n. For n large enough
and c1sn,γ

√
log n ≤ u ≤ c2, we have that

Pf

[
sup

h∈Hn,γ
|Zn,γ (h)| ≥ u

]
≤ 8 exp

{
−a u

2

s2
n,γ

}
.

Proof. Let us note that Zn,γ (h) =
∫
Kγ,hd (Pn − Pf ) and apply Van de Geer’s in-

equality of Proposition 4.1, for K = Kmax/hn,γ and M = sn,γ
√
n. Indeed,

min
{

8M,
2C1M

2

K

}
=

2C1M
2

K
≤ c2

for c2 large enough, and

C0√
n

∫ M

0
max

{
H

1/2
B (K, x) , 1

}
dx ≤ C0

M
√

log n√
n

≤ c1sn,γ
√

log n.

The hypothesis are verified, then

Pf

[
sup

h∈Hn,γ
|Zn,γ (h)| ≥ u

]
≤ 8 exp

{
−anu

2

M2

}
≤ 8 exp

{
−a u

2

s2
n,γ

}
.

2

Theorem 4.6 We have

sup
γ∈B−
γ<β

βNn
∆n

sup
f∈Wn(β,L)

ψ−qn,βEf

[(
sup

h∈Hn,γ
|Zn,γ (h)|

)q
I

(
sup

h∈Hn,γ
|Zn,γ (h)| ≥ τn,γ

)]
→

n→∞
0,

uniformly in β ∈ Bn. In particular, when γ = β, we have

sup
f∈Wn(β,L)

ψ−qn,βEf

[(
sup

h∈Hn,β
|Zn,β (h)|

)q
I

(
sup

h∈Hn,β
|Zn,β (h)| ≥ τn,β

)]
→

n→∞
0,

uniformly in β ∈ Bn.
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Proof. Let us write the expectation as follows:

Ef

[(
sup

h∈Hn,γ
|Zn,γ (h)|

)q
I

(
sup

h∈Hn,γ
|Zn,γ (h)| ≥ τn,γ

)]

=
∫ c3/hn,γ

τn,γ

Pf

[
sup

h∈Hn,γ
|Zn,γ (h)| ≥ u

]
duq.

Indeed, we can bound sup
h∈Hn,γ

|Zn,γ (h)| ≤ c3/hn,γ for some c3 > 0 and it is useless to inte-

grate further on. We split the integration domain into three intervals: I =
[
τn,γ , c1sn,γ

√
log n

]
,

II =
[
c1sn,γ

√
log n, c2

]
and III = [c2, c3/hn,γ ], which are non-empty for n large enough.

Let us apply Lemma 4.3 on the interval I and get∫
I
Pf

[
sup

h∈Hn,γ
|Zn,γ (h)| ≥ u

]
duq ≤ d3

∫
I

exp
{
− u2

2s2
n,γ

(1− δn2)
}
duq

≤ O (1) sqn,γ exp

{
−
τ2
n,γ

2s2
n,γ

(1− δn2)

}
.

Now

ψ−qn,β

∫
I
≤ O (1)

sqn,γ
ψqn,β

exp

{
−

(
q

4

(
1
γ
− 1
β

)
log n+

1
2

√
log n
βNn

)
(1− δn2)

}

≤ O (1) exp

{
−1

2

√
log n
βNn

(1− δn2)

}
= o (1) .

On the second interval II, we write∫
II
Pf

[
sup

h∈Hn,γ
|Zn,γ (h)| ≥ u

]
duq ≤

∫
II
Pf

[
sup

h∈Hn,γ
|Zn,γ (h)| ≥ c1sn,γ

√
log n

]
duq

≤ cq2Pf

[
sup

h∈Hn,γ
|Zn,γ (h)| ≥ c1sn,γ

√
log n

]
≤ 8cq2 exp

{
−ac2

1 log n
}

by Lemma 4.5 and

ψ−qn,β

∫
II
≤ O (1)n

q
2
− q

4β exp
{
−ac2

1 log n
}

≤ O (1) exp
{
− log n

(
ac2

1 −
q

2
+

q

4β

)}
≤ O (1) exp

{
−q log n

4βNn
− log n

(
ac2

1 −
q

2

)}
= o (1)
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by choosing c1 sufficiently large. Similarly,∫
III

Pf

[
sup

h∈Hn,γ
|Zn,γ (h)| ≥ u

]
duq ≤

∫
III

Pf

[
sup

h∈Hn,γ
|Zn,γ (h)| ≥ c2

]
duq

≤ Kq
max

sqn,γ
8 exp

{
−a c2

2

s2
n,γ

}
≤ O (1)

sqn,γ
exp

{
−O (1)n1− 1

2β1

}
.

Now,

ψ−qn,β

∫
III

≤ O (1)nq−
q

4β
− q

4γ exp
{
−O (1)n1− 1

2β1

}
≤ O (1) exp

{
−O (1)n1− 1

2β1 + q

(
1− 1

2βNn

)
log n

}
= o (1) .

To finish the proof it suffices to remember relations (2.5) to (2.7) and see that the three
sequences do not depend on f in Wn (β, L), nor on γ and β in Bn. 2

4.2 Probability of undershooting

We want to bound here the probability that the estimated value β̂ is strictly less than
the true value β i.e. Pf

[
β̂ = γ

]
for γ in (1/2, β) for the worst density in Wn (β, L) and

uniformly in β over Bn. We show in fact that β̂ typically overestimates the true value β
and that the undershooting is a rare event.

Lemma 4.1 Let us choose the sequence δn3 = exp
{
−1

8 ·
∆n logn
β2
N

}
which tends to 0, by

condition (2.4). Then for any γ0, γ two elements of the set B− such that γ0 ≤ γ < β, we
have for γ1 = min {α ∈ BNn : α > γ}, γ < γ1 ≤ β and

bn,γ0

δn3ηn,γ0

→
n→∞

0,
bn,γ1

δn3ηn,γ0

→
n→∞

0,
δn3sn,γ0

sn,γ1

→
n→∞

∞.

Proof. We see that for γ0 < γ1 in B− : hn,γ0/hn,γ1 ≤ O (1) (log n/n)
∆n
2βN ≤ o (1) by

Lemma (3.5). We write

bn,γ0

δn3ηn,γ0

=
√

2γ0

q log n
cbh

γ̃0− 1
2

n,γ0

δn3sn,γ0

≤ O (1)
√
βN

hγ̃0−γ0
n,γ0

δn3

≤ O (1)
√
βN exp

{
1
8

∆n log n
β2
N

− (γ̃0 − γ0) logn
2βN

}
.

By definition of γ̃0, see (3.2), γ̃0 − γ0 > min
{
β − γ, 1

2

}
≥ min

{
∆n,

1
2

}
> 0. Then

bn,γ0

δn3ηn,γ0

≤ O (1) exp
{
− log n

2βN

(
min

{
∆n,

1
2

}
− ∆n

4βN
− log βN

2
βN

log n

)}
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which is an o (1). It is easy to see now, that

bn,γ1

δn3ηn,γ0

=
√

2γ0

q log n
cbh

γ̃1− 1
2

n,γ1

δn3sn,γ0

≤ O (1)
√
βN
δn3

√
hn,γ0

hn,γ1

≤ O (1) exp
{
−1

4
∆n log n
β2
N

(
1− 4 log βN

∆n log n
β2
N

)}
which tends to 0, for γ̃1 defined as in (3.2).

We conclude with the third limit, using also Lemma (3.5)

δn3sn,γ0

sn,γ1

= δn3
νγ0

νγ1

√
hn,γ1

hn,γ0

≥ O (δn3)n
1
4

(
1
γ0
− 1
γ1

)

≥ O (1) exp
{

1
8

∆n log n
β2
N

}
→

n→∞
∞.

2

Lemma 4.2 Let γ, β in BNn, γ < β. Then, for the estimator β̂ of β, there exists a
constant d4 > 0 such that:

sup
β∈BNn

sup
f∈Wn(β,L)

Pf

[
β̂ = γ

]
≤ d4

βN
∆n

n
− q

4γ .

Proof. By the definition of β̂, when the event
{
β̂ = γ

}
occurs, then for γ1 =

min {α ∈ BNn : α > γ}, there exists at least one γ0, γ0 < γ1 ≤ β, for which∣∣∣f̂n,γ1(x0)− f̂n,γ0(x0)
∣∣∣ > η̂n,γ0 .

Then

Pf

[
β̂ = γ

]
≤
∑
γ0≤γ
γ0∈B−

Pf

[∣∣∣f̂n,γ1(x0)− f̂n,γ0(x0)
∣∣∣ > η̂n,γ0

]

≤ cardB− · sup
γ0≤γ
γ0∈B−

Pf

[∣∣∣f̂n,γ1(x0)− f̂n,γ0(x0)
∣∣∣ > η̂n,γ0

]

≤ βN
∆n
· sup
γ0≤γ
γ0∈B−

(p1 + p2) ,

where

p1 = Pf

[{∣∣∣f̂n,γ1(x0)− f̂n,γ0(x0)
∣∣∣ > η̂n,γ0

}
∩ {An,γ0 ∩An,γ1}

]
,

p2 = Pf

[{∣∣∣f̂n,γ1(x0)− f̂n,γ0(x0)
∣∣∣ > η̂n,γ0

}
∩
{
An,γ0 ∪An,γ1

}]
.

In the case where the event An,γ0 holds, we have that

η̂n,γ0 = ηn,γ0

(
ĥn,γ0

hn,γ0

)γ̃0−1/2

≥ ηn,γ0 (1− δn)
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and we may replace:

p1 ≤ Pf

[
sup

h∈Hn,γ1

|fn,γ1(h)− f |+ sup
h∈Hn,γ0

|fn,γ0(h)− f | > ηn,γ0 (1− δn)

]
.

Let us write that

sup
h∈Hn,γ1

|fn,γ1(h)− f |+ sup
h∈Hn,γ0

|fn,γ0(h)− f |

≤ sup
h∈Hn,γ1

(Bn,γ1 (h) + |Zn,γ1 (h)|) + sup
h∈Hn,γ0

(Bn,γ0 (h) + |Zn,γ0 (h)|)

≤ (bn,γ1 + bn,γ0) (1 + δn) + sup
h∈Hn,γ1

|Zn,γ1 (h)|+ sup
h∈Hn,γ0

|Zn,γ0 (h)| .

By Lemma 4.1, (bn,γ1 + bn,γ0) (1 + δn) ≤ d5δn3ηn,γ0 (1− δn), for some d5 > 0 and for n
large enough. Then, we replace

p1 ≤ Pf

[
sup

h∈Hn,γ1

|Zn,γ1 (h)|+ sup
h∈Hn,γ0

|Zn,γ0 (h)| ≥ ηn,γ0 (1− δn) (1− d5δn3)

]

≤ Pf

[
sup

h∈Hn,γ0

|Zn,γ0 (h)| ≥ ηn,γ0 (1− δn) (1− 2d5δn3)

]

+ Pf

[
sup

h∈Hn,γ1

|Zn,γ1 (h)| ≥ d5δn3ηn,γ0 (1− δn)

]
.

For the first term on the right-hand side we apply Lemma 4.3, for

τn,γ0 ≤ ηn,γ0 (1− δn) (1− 2d5δn3) ≤ c1sn,γ0

√
log n

(that holds for c1 large enough) and by the choice of δn3 we get

Pf

[
sup

h∈Hn,γ0

|Zn,γ0 (h)| ≥ ηn,γ0 (1− δn) (1− 2d5δn3)

]

≤ d3 exp
{
−q log n

4γ0
(1−O (1) δn3)

}
≤ d3n

− q
4γ .

For the second term, τn,γ1 ≤
√

q
2γ1
sn,γ1

√
log n ≤ d5δn3ηn,γ0 (1− δn) ≤ c2 and we apply

Lemma 4.5 for γ0 ≤ γ as follows

Pf

[
sup

h∈Hn,γ1

|Zn,γ1 (h)| ≥ d5δn3ηn,γ0 (1− δn)

]

≤ 8 exp

{
−a log n

γ

(
δn3sn,γ0

sn,γ1

)2

(1− δn)2

}
and by the third statement of Lemma 4.1 this exponential is infinitely small with respect
to n−

q
4γ . That allows us to conclude that

p1 ≤ O (1)n−
q

4γ .
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We finish the proof of the lemma by using Lemma 3.2

p2 ≤ Pf
[
An,γ0

]
+ Pf

[
An,γ1

]
≤ 4 exp

{
−n ((1− α)hnδnρn)2

2 ‖K0‖2∞

}
,

which is o (1)n−
q

4γ by (3.1). 2

Theorem 4.3 We have the following convergence

sup
β∈BNn

cardB− sup
γ∈B−
γ<β

(1 + δn)q bqn,γ + τ qn,γ
ψqn,β

sup
f∈Wn(β,L)

Pf

[
β̂ = γ

]
→

n→∞
0.

Proof. Let us use Lemma 4.2 and, respectively, Lemma 3.5, for γ < β

(1 + δn)q bqn,γ + τ qn,γ
ψqn,β

sup
f∈Wn(β,L)

Pf

[
β̂ = γ

]
≤ d4

(1 + δn)q bqn,γ + τ qn,γ
ψqn,β

βN
∆n

n
− q

4γ

≤ O (1) (log n)q/2 nq
(

1
4γ
− 1

4β

)
βN
∆n

n
− q

4γ .

We also have cardB− ≤ βN
∆n

and then

cardB− sup
γ∈B−
γ<β

(1 + δn)q bqn,γ + τ qn,γ
ψqn,β

sup
f∈Wn(β,L)

Pf

[
β̂ = γ

]
≤ O (1)

β2
N (log n)q/2

∆2
n

n
− q

4βN

which is a o (1), by means of relations (2.5) to (2.7). This expression is also independent
of β in B and then the convergence is uniform. 2

5 Upper bound

Let us prove (2.16) and (2.18) by successive decomposition of the risk and using the tools
developed above. Denote Rn,β = Rn,β (f∗n, ψn,β). In order to bound from above this
expression, we consider the two possibilities when the estimated value β̂ is greater or less
than the true, unknown value of β. So we write:

Rn,β ≤ R+
n,β +R−n,β,

where

R+
n,β = sup

f∈Wn(β,L)
ψ−qn,βEf

[
|f∗n(x0)− f(x0)|q I

(
β̂ ≥ β

)]
,

R−n,β = sup
f∈Wn(β,L)

ψ−qn,βEf

[
|f∗n(x0)− f(x0)|q I

(
β̂ < β

)]
.

Thus, the proof of (2.16) consists of the following parts:

lim sup
n→∞

sup
β∈B−

R+
n,β ≤ 1 (5.1)

and

lim sup
n→∞

sup
β∈B−

R−n,β = 0. (5.2)
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5.1 Proof of (5.1)

Under the assumption β̂ ≥ β, we have
∣∣∣f̂n,β̂(x0)− f̂n,β(x0)

∣∣∣ ≤ η̂n,β, by the definition of

the estimator β̂. Therefore

R+
n,β ≤ sup

f∈Wn(β,L)
ψ−qn,βEf

[
η̂n,β +

∣∣∣f̂n,β(x0)− f(x0)
∣∣∣]q ,

where f̂n,β(x0) is the kernel estimator with kernel Kβ and random bandwidth ĥn,β.
We shall split again this upper bound, by integrating separately over An,β and An,β

(the complementary event of An,β), respectively. Then

R+
n,β ≤ R

+
n,β (An,β) +R+

n,β

(
An,β

)
,

where

R+
n,β (An,β) = sup

f∈Wn(β,L)
ψ−qn,βEf

[(
η̂n,β +

∣∣∣f̂n,β(x0)− f(x0)
∣∣∣)q I (An,β)

]

R+
n,β

(
An,β

)
= sup

f∈Wn(β,L)
ψ−qn,βEf

[(
η̂n,β +

∣∣∣f̂n,β(x0)− f(x0)
∣∣∣)q I (An,β)] .

We shall prove that

lim sup
n→∞

sup
β∈B−

R+
n,β (An,β) ≤ 1 (5.3)

and that

lim sup
n→∞

sup
β∈B−

R+
n,β

(
An,β

)
= 0. (5.4)

Proof of (5.3)
We are in the case where the event An,β holds. Then

η̂n,β +
∣∣∣f̂n,β(x0)− f(x0)

∣∣∣ ≤ sup
h∈Hn,β

[
ηn,β

(
h

hn,β

)β−1/2

+ |fn (x0, h,Kβ)− f (x0)|

]

≤ sup
h∈Hn,β

[
ηn,β

(
h

hn,β

)β−1/2

+ bn,β (h) + |Zn,β (h)|

]
≤ ψn,β (1 + δn) + sup

h∈Hn,β
|Zn,β (h)| .
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because Hn,β ⊇ Hn,β by relation (4.1) and ηn,β + bn,β = ψn,β. Then

R+
n,β (An,β)

≤ sup
f∈Wn(β,L)

Ef

[
(1 + δn) + ψ−1

n,β sup
h∈Hn,β

|Zn,β (h)|

]q
≤ sup

f∈Wn(β,L)

(
1 + δn + ψ−1

n,βτn,β

)q
+2q−1 (1 + δn)q sup

f∈Wn(β,L)
Pf

[
sup

h∈Hn,β
|Zn,β (h)| ≥ τn,β

]

+2q−1 sup
f∈Wn(β,L)

ψ−qn,βEf

[(
sup

h∈Hn,β
|Zn,β (h)|

)q
I

(
sup

h∈Hn,β
|Zn,β (h)| ≥ τn,β

)]
.

For the first term on the right-hand side we apply Lemma 3.5 and this term is 1 + o (1),
uniformly in β over B−. The last two terms on the right-hand side tend to zero uniformly
in β over B−, as we see from Theorem 4.4 and the particular case of Theorem 4.6. This
proves statement (5.3).

Proof of (5.4)
We give direct upper bounds by Lemma 3.4 and then apply Lemma 3.2

R+
n,β

(
An,β

)
≤ sup

f∈Wn(β,L)
ψ−qn,β

(
η̂n,β +

∣∣∣f̂n,β(x0)− f(x0)
∣∣∣)q sup

f∈Wn(β,L)
Pf
[
An,β

]
≤ 4d0n

d1 exp

{
−n (hnδnρn)2

2 ‖K‖2∞

}
.

This bound is exponentially small uniformly in β over B− by (3.1), then (5.4) holds.

5.2 Proof of (5.2)

As
{
β̂ < β

}
⊂

⋃
γ∈B−
γ<β

{
β̂ = γ

}
, we may write:

R−n,β ≤
∑
γ∈B−
γ<β

sup
f∈Wn(β,L)

ψ−qn,βEf

[∣∣∣f̂n,γ(x0)− f(x0)
∣∣∣q I (β̂ = γ

)]

≤ cardBNn sup
γ∈B−
γ<β

sup
f∈Wn(β,L)

ψ−qn,βEf

[∣∣∣f̂n,γ(x0)− f(x0)
∣∣∣q I (β̂ = γ

)]

≤ βNn
∆n
· sup
γ∈B−
γ<β

Rγn,β,

where

Rγn,β = sup
f∈Wn(β,L)

ψ−qn,βEf

[∣∣∣f̂n,γ(x0)− f(x0)
∣∣∣q I (β̂ = γ

)]
.
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Similarly to the proof of (5.3) we integrate over An,γ and An,γ , respectively. We obtain

Rγn,β ≤ R
γ
n,β (An,γ) +Rγn,β

(
An,γ

)
,

with

Rγn,β (An,γ) = sup
f∈Wn(β,L)

ψ−qn,βEf

[∣∣∣f̂n,γ(x0)− f(x0)
∣∣∣q I (β̂ = γ

)
I (An,γ)

]
Rγn,β

(
An,γ

)
= sup

f∈Wn(β,L)
ψ−qn,βEf

[∣∣∣f̂n,γ(x0)− f(x0)
∣∣∣q I (β̂ = γ

)
I
(
An,γ

)]
.

Therefore, R−n,β ≤
βNn
∆n
· sup
γ∈B−
γ<β

(
Rγn,β (An,γ) +Rγn,β

(
An,γ

))
. We shall prove that

lim sup
n→∞

sup
β∈B−

βNn∆n
sup
γ∈B−
γ<β

Rγn,β (An,γ)

 = 0 (5.5)

and that

lim sup
n→∞

sup
β∈B−

βNn∆n
sup
γ∈B−
γ<β

Rγn,β
(
An,γ

) = 0. (5.6)

Proof of (5.5)
The event An,γ is supposed to hold and we write directly that∣∣∣f̂n,γ(x0)− f(x0)

∣∣∣ ≤ sup
h∈Hn,γ

|fn (x0, h,Kγ)− f (x0)| ≤ sup
h∈Hn,γ

(bn,γ (h) + |Zn,γ (h)|) .

We use this bound in the expression of An,γ and again relation (4.1)

Rγn,β (An,γ)

≤ sup
f∈Wn(β,L)

ψ−qn,βEf

[(
bn,γ (1 + δn) + sup

h∈Hn,γ
|Zn,γ (h)|

)q
I
(
β̂ = γ

)]

≤ 2q−1 (1 + δn)q sup
f∈Wn(β,L)

(
bqn,γ
ψqn,β

· Pf
[
β̂ = γ

])

+2q−1 sup
f∈Wn(β,L)

ψ−qn,βEf

[(
sup

h∈Hn,γ
|Zn,γ (h)|

)q
I
(
β̂ = γ

)]

≤ 2q−1 sup
f∈Wn(β,L)

bqn,γ (1 + δn)q + τ qn,γ
ψqn,β

sup
f∈Wn(β,L)

Pf

[
β̂ = γ

]
+2q−1 sup

f∈Wn(β,L)
ψ−qn,βEf

[(
sup

h∈Hn,γ
|Zn,γ (h)|

)q
I

(
sup

h∈Hn,γ
|Zn,γ (h)| ≥ τn,γ

)]
.

Then, we have to apply Theorems 4.3 and 4.6. Thus, both terms on the right-hand side
tend to 0, when we multiply by cardBn and we take their supremum over γ < β, uniformly
over β ∈ B−. This finishes the proof of (5.5).
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Proof of (5.6)
We apply again Lemma 3.4 together with Lemma 3.2 which allow us to conclude that

Rγn,β
(
An,γ

)
≤ sup

f∈Wn(β,L)
ψ−qn,β | f̂n,γ(x0)− f(x0) |q sup

f∈Wn(β,L)
Pf
[
An,γ

]
≤ 4d0n

d1 exp

{
−n (hnδnρn)2

2 ‖K‖2∞

}
.

Since those bounds are exponentially small by (3.1) and depend neither on γ, nor on β,
we have

sup
β∈B

βNn∆n
· sup
γ∈B
γ<β

Rγn,β
(
An,γ

) = o (1) .

5.3 Proof of (2.18)

For the case β = βNn = βN , we have very similarly to (5.1):

R+
n,βN

(f∗n, ψn,βN ) = sup
f∈Wn(β,L)

ψ−qn,βNEf

[
|f∗n (x0)− f (x0)|q I

(
β̂ = βN

)]
= sup

f∈Wn(β,L)
ψ−qn,βNEf [|fn,βN (x0)− f (x0)|q]

≤ sup
f∈Wn(β,L)

bqn,βN + c (q) sqn,βN
ψqn,βN

<∞,

by Lemma 3.3. Similarly to (5.2),

R−n,βN (fn, ψn,βN ) = sup
f∈Wn(β,L)

ψ−qn,βNEf

[
|f∗n (x0)− f (x0)|q I

(
β̂ < βN

)]
≤ βN

∆n
sup
γ∈B−

Rγn,βN ≤ o (1) .

Indeed, the proof goes exactly like in the case β ∈ B−, for β = βN and γ ∈ B−.
The proof of the upper bounds is now completed. 2

6 Lower bound

The proof of the inequality (2.17) will now be given. In order to bound from below the
minimax risk Rn,β(fn, ψn,β) in (2.2), it suffices to bound it over a suitably chosen subset
of probability densities in Wn (β, L).

6.1 Introduction

Let f be a positive probability density on IR, infinitely continuously differentiable. For
β in BNn , we denote

∥∥f (β)
∥∥2

2
= 1

2π

∫
IR (F (f) (x))2 |x|2β dx. Let us consider the extreme

values: β1 and βN−1 = βNn−1 (the last element of the set B−) and let f be such that both
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∥∥f (β1)
∥∥

2
≤ L and

∥∥f (βN−1)
∥∥

2
≤ L hold, for each n. Let δ ∈ (0, 1/2) be a small constant

and define

fn,0 (x) =
(
δ

2

) 1
β1+1/2

f

(
x

(
δ

2

) 1
β1+1/2

)
,

such that fn,0 (x0) ≥ ρn.

Lemma 6.1 Define K∗β (x) = ν−1
β (2β − 1)

1
4β Kβ

(
(2β − 1)

1
2β x

)
,where Kβ is given by

(2.13). Then
∥∥∥K∗β∥∥∥

2
= 1,

∥∥∥K∗(β)
β

∥∥∥
2

= 1 and

K∗β (0) = bβ (2β) (2β − 1)−
2β−1

4β .

Indeed, it suffices to recall that ‖Kβ‖2 = νβ and that ν2
β = (2β − 1) b2β. We can modify

the function K∗β in order to get the compact supported function K̃β having the following
properties.

Lemma 6.2 (Tsybakov[29]) For any fixed δ ∈
(
0, 1

2

)
and β > 1

2 there exists a number

D = D (β, δ) > 0 and an integrable function K̃β supported on (−D,D) such that
∥∥∥K̃β

∥∥∥
2
≤

1− δ/2,
∥∥∥K̃(β)

β

∥∥∥
2
≤ 1− δ/2 and (1− δ)K∗β (0) ≤ K̃β (0) ≤ K∗β (0).

By this lemma, we get an integrable kernel, K̃β1 ∈ W (β1, 1), satisfying the same condi-
tions. Let

gn,β1 (x) = Lh̃
β1− 1

2
n,β1

· K̃β1

(
x− x0

h̃n,β1

)
,

where h̃n,β1 = k̃β1

(
fn,0(x0)·logn

n

) 1
2β1 and k̃β1 =

(
q

L2·2β1

) 1
2β1 .

Denote εn,β1 =
∫
IR gn,β1 (x) dx which is finite by the previous lemma. Consider

fn,1(x) = fn,0(x)(1− εn,β1) + gn,β1(x).

Lemma 6.3 Let fn,0, gn,β1 and εn,β1 be defined as above. Then, fn,0 ∈Wn (βN−1, L) and

fn,1 ∈Wn (β1, L), εn,β1 = O

(
h̃
β1+ 1

2
n,β1

)
and (1− δ)ψn,β1 ≤ gn,β1 (x0) ≤ ψn,β1 .

Proof. We can easily prove that fn,0 is also a positive density function, infinitely
continuously differentiable on IR. Moreover,

∥∥∥f (β1)
n,0

∥∥∥
2

=
δ

2

∥∥∥f (β1)
∥∥∥

2
≤ Lδ

2

Consequently, fn,0 ∈Wn

(
β1, L

δ
2

)
and obviously fn,0 ∈Wn (βN−1, L), too.

We can see that

εn,β1 = Lh̃
β1+ 1

2
n,β1

∫
IR
K̃β1 (x) dx = O

(
h̃
β1+ 1

2
n,β1

)
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and that gn,β1 (x0) = Lh̃
β1− 1

2
n,β1

K̃β1 (0). Remark that ψn,β1 = Lh̃
β1− 1

2
n,β1

Kβ1 (0) and by Lemma
6.3

(1− δ)ψn,β1 ≤ gn,β1 (x0) ≤ ψn,β1 .

Remark also that
∥∥∥g(β1)

n,β1

∥∥∥
2

= L
∥∥∥K̃(β1)

β1

∥∥∥
2
≤ L

(
1− δ

2

)
.

It is easy to prove that fn,1 is a density function, positive for n large enough and that

fn,1 (x0) ≥ ρn (1− εn,β1) + gn,β1 (x0) ≥ ρn

since gn,β1 (x0) ≥ ρnεn,β1 , for n large enough. Moreover,∥∥∥f (β1)
n,1

∥∥∥
2
≤ (1− εn,β1)

∥∥∥f (β1)
n,0

∥∥∥
2

+
∥∥∥g(β1)

n,β1

∥∥∥
2

≤ Lδ
2

+ L

(
1− δ

2

)
= L.

Then fn,1 ∈Wn (β1, L). 2

6.2 Proof of the lower bound

For chosen fn,0 ∈Wn (βN−1, L) and fn,1 ∈Wn (β1, L) as in the previous section, we have

inf
f̂n

sup
β∈B

Rn,β(f̂n, ψn,β) ≥ inf
f̂n

max
β∈{β1,βN−1}

Rn,β(f̂n, ψn,β)

≥ inf
f̂n

max
{
Efn,0 [ψ−qn,βN−1

· | f̂n(x0)− fn,0(x0) |q],

Efn,1 [ψ−qn,β1
· | f̂n(x0)− fn,1(x0) |q]

}
.

Let us denote:

Tn = ψ−1
n,β1
· | f̂n(x0)− fn,0(x0) | and qn =

ψn,β1

ψn,βN−1

.

Remark that qn ≥ a
(

n
logn

)βN−1−β1
4β1βN−1 → +∞, when n→∞. Then, we may write

inf
f̂n

sup
β∈B

Rn,β(f̂n, ψn,β) ≥ inf
Tn

max
{
E0 |qnTn|q , E1

∣∣∣∣Tn − fn,1(x0)− fn,0(x0)
ψn,β1

∣∣∣∣q}
≥ inf

Tn
max {E0 |qnTn|q , E1 |Tn − θ1|q} , (6.1)

with the notation E0 = Efn,0 , E1 = Efn,1 (with the associated probability laws P0 and
P1) and θ1 = (gn,β1(x0)− εn,β1 · fn,0(x0)) /ψn,β1 . Let us denote Rn (Tn, θ1) the right-hand
side term in (6.1), where inf

Tn
denotes the infimum over all random functions Tn.

Following the proof in Theorem 6, Tsybakov[29] we state here a similar result.

Lemma 6.4 Let the numbers qn, q > 0, τ > 0, 0 < δ < 1
2 be fixed, let θ1 be a real number

such that |θ1| ≥ 1− 2δ and let P0, P1 be such that P1

[
dP0
dP1
≥ τ

]
≥ 1− δ. Then

Rn (Tn, θ1) ≥ (1− δ) τqqn (2δ)q (1− 2δ)2q

(1− 2δ)q + τqqn (2δ)q
. (6.2)
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Proof. Remark that

|θ1| =
∣∣∣∣gn,β1(x0)
ψn,β1

−
εn,β1 · fn,0(x0)

ψn,β1

∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣gn,β1(x0)
ψn,β1

∣∣∣∣− ∣∣∣∣εn,β1 · fn,0(x0)
ψn,β1

∣∣∣∣∣∣∣∣ .
By Lemma 6.3, 1 − δ <

∣∣∣gn,β1
(x0)

ψn,β1

∣∣∣ < 1. By the definition of εn,β1 , εn,β1
·fn,0(x0)

ψn,β1
≤

O
(
h̃n,β1

)
= o (1) which allows us to consider

∣∣∣ εn,β1
·fn,0(x0)

ψn,β1

∣∣∣ < δ, for sufficiently large
n. Then |θ1| ≥ 1− 2δ.

Let B = {|Tn| ≥ 2δ (1− 2δ)}. For δ < 1
2 , the event

{
|Tn − θ1| ≥ (1− 2δ)2

}
contains

B and we deduce that

P1

[
|Tn − θ1| ≥ (1− 2δ)2

]
≥ P1

[
B
]
.

Then:

Rn (Tn, θ1) ≥ inf
Tn

max
{
qqn (2δ)q (1− 2δ)q · P0 [B] , (1− 2δ)2q · P1

[
B
]}
. (6.3)

Moreover, let A =
{
dP0
dP1
≥ τ

}
and suppose for the moment that

P1 [A] ≥ 1− δ (6.4)

for arbitrary small δ ∈
(
0, 1

2

)
, and τ > 0. Then

P0 [B] = E1

[
dP0

dP1
I (B)

]
≥ τP1 [A ∩B] ≥ τ (P1 [B]− δ)

and we use this to bound from below the right hand expression in (6.3) to get

Rn (Tn, θ1) ≥ inf
Tn

max
{

(qn2δ (1− δ))q τ (P1 [B]− δ) , (1− 2δ)2q P1

[
B
]}

≥ inf
0≤t≤1

max
{

(qn2δ (1− δ))q τ (t− δ) , (1− 2δ)2q (1− t)
}

≥ (1− δ) τqqn (2δ)q (1− 2δ)2q

(1− 2δ)q + τqqn (2δ)q
.

2

Let us prove that (6.4) holds for n large enough, τ > 0. We write

P1 [A] = P1

[
n∏
i=1

fn,0 (Xi)
fn,1 (Xi)

≥ τ

]

= P1

[
n∑
i=1

1√
log n

log
fn,0 (Xi)
fn,1 (Xi)

≥ log τ√
log n

]
.

Consider the random variables Zn,i = 1√
logn

log fn,0
fn,1

(Xi), for i = 1, . . . , n, n ≥ 1, which are
independent and identically distributed variables within each series. Let V1 [Zn,i] be the
variance with respect to the distribution of X1, . . . , Xn when the underlying probability
density is fn,1 and let Un,i = (Zn,i − E1 [Zn,i]) /σn.
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Lemma 6.5 We have, for arbitrary small δ ∈
(
0, 1

2

)
:

1.
n∑
i=1

E1 [Zn,i] ≥ −
√

log n q
4β1

(
1− δ2

4

)2
;

2. σ2
n =

n∑
i=1

V1 [Zn,i] ≤ q
2β1

(
1− δ2

4

)2
;

3. E1

[
|Un,i|3

]
< +∞ and lim

n→∞

n∑
i=1

E1

[
|Un,i|3

]
= 0.

Proof. 1. Let us recall that there exists a fixed a0 (δ) ∈ (0, 1) such that

−x− x2

2

(
1 +

δ

2

)
≤ log(1− x) ≤ −x, (6.5)

for any 0 < x < a0 (δ). Then

n∑
i=1

E1 [Zn,i] =
n√

log n

[
− log (1− εn,β1) +

∫
log
(

1−
gn,β1

fn,1
(x)
)
fn,1 (x) dx

]
.

As εn,β1 → 0 and sup
x
gn,β1/fn,1 (x) → 0 when n → ∞, we may suppose without loss of

generality that they are smaller than a0 (δ) and apply the inequality (6.5). Then, for n
large enough,

n∑
i=1

E1 [Zn,i] ≥ −
1
2

(
1 +

δ

2

)
n√

log n

∫
g2
n,β1

fn,1
(x) dx

≥ −1
2

(
1 +

δ

2

)
qfn,0 (x0)

2β1

√
log n

h̃n,β1

∫
K̃2
β1

(
x− x0

h̃n,β1

)
dx

fn,1 (x)

≥ −
√

log n
(

1 +
δ

2

)2 q

4β1

∥∥∥K̃β1

∥∥∥2

2
(1 + o (1))

≥ −
√

log n
(

1− δ2

4

)2
q

4β1
(1 + o (1)) ,

where we used Lemma 6.2, Bochner’s lemma and the fact that fn,0/fn,1 (x0) = o (1) and
becomes less than 1 + δ/2 when n is large enough.

2. For the variance, we have similarly

σ2
n ≤

n

log n
E1

[
log2

(
1−

gn,β1

fn,1
(X1)

)]
≤ n

log n

(∫
g2
n,β1

fn,1
(x) dx+

1
2

(
1 +

δ

2

)∫
g4
n,β1

fn,1
(x) dx

)

≤
(

1 +
δ

2

)2 q

2β1

∥∥∥K̃β1

∥∥∥2

2

≤
(

1− δ2

4

)2
q

2β1
.
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for n large enough.
3. By similar considerations, we get:

E1

[
log2

(
1−

gn,β1

fn,1
(X1)

)]
≥

∫
g2
n,β1

fn,1
(x) dx

≥ log n
n

(
1− δ

2

)
q

2β1

∥∥∥K̃β1

∥∥∥2

2

and [
E1 log

(
1−

gn,β1

fn,1
(X1)

)]2

≤

(
−εn,β1 −

1
2

(
1 +

δ

2

)∫
g2
n,β1

fn,1
(x) dx

)2

= o (1)
log n
n

.

From those two last inequalities, we conclude that σ2
n ≥

(
1− δ

2

)2 q
2β1

∥∥∥K̃β1

∥∥∥2

2
for n large

enough. Then there exists lim inf
n→∞

n∑
i=1

V1 [Zn,i] = σ2 > 0, for δ ∈ (0, 1/2).Then

E1

[
|Ui,n|3

]
≤ O (1)

(log n)3/2
E1

∣∣∣∣log
(

1−
gn,β1

fn,1
(Xi)

)∣∣∣∣3 .
Let us note that

E1

[∣∣∣∣log
(

1−
gn,β1

fn,1
(Xi)

)∣∣∣∣3
]
≤ O (1)

∫ |gn,β1 |
3

f2
n,1

(x) dx

≤ O (1) h̃3β1−1/2
n,β1

1

h̃n,β1

∫ ∣∣∣∣∣K̃β1

(
x− x0

h̃n,β1

)∣∣∣∣∣
3

dx

f2
n,1 (x)

≤ O (1)
(

log n
n

) 3β1−1/2
2β1

= o(1).

Thus

n∑
i=1

E1

[
|Ui,n|3

]
≤ O (1)

(
1

log n

) 1
4β1

(
1
n

)β1−1/2
2β1

= o (1) .

2

So, the variables (Un,i)1≤i≤n,n≥1 are centered,
n∑
i=1

V1 [Un,i] = 1 and they satisfy the

property 3 of Lemma 6.5. Then we may apply Lyapounov’s central limit theorem and get
the following convergence in law to the standard Gaussian distribution:

Un =
n∑
i=1

Un,i
D→ N (0, 1) , as n→∞.
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We take mn = log τ−n·E1Zn,1√
n·V1Zn,1

and see that

P1 [A] = P1

[
Un ≥

log τ − nE1Zn,1√
nV1Zn,1

]
= P1 [Un ≥ mn] .

Let us choose τ = n−ξ, ξ = − q
4β1

(
1− δ2

4

)
and use Lemma 6.5

mn ≤ −
√

log n
1
2

√
q

2β1

δ2

4
.

Then, it is easy to see that mn → −∞, for arbitrarily small δ ∈ (0, 1/2) which implies that
P1 [A] →

n→∞
1. This proves that (6.4) holds for n large enough and δ ∈ (0, 1/2) arbitrarily

small.
By (6.1) and (6.2), we conclude that:

inf
f̂n

sup
β∈B

Rn,β(f̂n, ψn,β) ≥ (1− δ) τqqn (2δ)q (1− 2δ)2q

(1− 2δ)q + τqqn (2δ)q
. (6.6)

As, furthermore:

lim inf
n→∞

τqqn ≥ lim inf
n→∞

n
− q

4β1

(
1− δ

2

4

)(
ψn,β1

ψn,βN−1

)q
≥ lim inf

n→∞
exp

[
q

4
log n

(
1
β1

δ2

4
− 1
βN−1

− log log n
log n

(
1
β1
− 1
βN−1

))]
which is∞, for arbitrarily small δ ∈ (0, 1/2). Then by (6.6) we get the stated result (2.17).

2
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