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Abstract

Tanaka [?], showed a way to relate the measure solution {Pt}t of a spatially ho-
mogeneous Boltzmann equation of Maxwellian molecules without angular cutoff to a
Poisson-driven stochastic differential equation: {Pt} is the flow of time marginals of
the solution of this stochastic equation.
In the present paper, we extend this probabilistic interpretation to much more general
spatially homogeneous Boltzmann equations. Then we derive from this interpretation
a numerical method for the concerned Boltzmann equations, by using easily simulable
interacting particle systems.
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1 Introduction.

The spatially homogeneous Boltzmann equation deals with the distribution of the velocities
Pt(dv) at the instant t, in a gas. In the case of Maxwell molecules, Tanaka, [?], has built
a process Vt, which can be seen as the velocity of the ”mean particle”, of which the law
is given by Pt(dv). This representation of this particular Boltzmann equation has proved
very usefull. Firstly, it did allow to extend the works of Graham, Méléard, [?], [?], which
were concerning numerical methods for Boltzmann equations with cutoff, to the case of
Boltzmann equations without cutoff, see Desvillettes, Graham, Méléard, [?], and Fournier,
Méléard, [?]. Secondly, the use of recent tools of stochastic analysis did allow to prove, via
Tanaka’s representation, the existence of very smooth and positive solutions to the Boltz-
mann equation, see the works of Graham, Méléard, [?], Fournier [?].
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Our aim in this paper is to extend the probabilistic interpretation of Tanaka to the case
of non Maxwell molecules. We thus consider a quite general spatially homogeneous 2-
dimensional Boltzmann equation without angular cutoff. Then we state a nonlinear stochas-
tic differential equation of Poisson type, related to our Boltzmann equation.
We prove, by using the usual tools of convergence in law on the set of càdlàg functions, the
existence of a solution to this stochastic equation. As a corollary, we obtain a new result of
existence of weak solutions of Boltzmann equations, in particular with very general initial
data.
Using the above developped tools, we then build Monte Carlo approximations. We prove
a convergence result of the empirical law associated with an interacting particle system to
the solution of our Boltzmann equation.
We finally discuss about numerical results.

There is a very tiny litterature about existence, uniqueness or regularity of weak solutions
for a Boltzmann equation without cutoff, for a non Maxwell gas, even in the spatially ho-
mogeneous case. Let us quote Proutière [?] or Alexandre-Desvillettes-Villani-Wennberg [?].
In particular, uniqueness is an open problem for the equation we consider. Since all the
convergence results we prove are obtained by compactness methods, we obtain only exis-
tence of converging subsequences.

The paper is organized as follows : in the next section, we recall the Bolzmann equation.
In Section 3, we give our pathwise interpretation, and solve the nonlinear Poisson driven
stochastic differential equation. In Section 4, we study particle systems. We describe the
(very simple) simulation algorithm in Section 5. Numerical results are given in Section 6.

Notations
- IDT will denote the Skorohod space ID([0, T ], IR2) of càdlàg functions from [0, T ] into IR2.
The space IDT endowed with the Skorohod topology is a Polish space.
- P(IR2) is the set of probability measures on IR2 and P2(IR2) the subset of probability
measures with a second order moment. Similarly, P(IDT ) will denote the space of probabil-
ity measures on IDT and P2(IDT ) will be the subset of probability measures with a second
order moment: q ∈ P2(IDT ) if

∫
x∈IDT

supt∈[0,T ] |x(t)|2q(dx) <∞.
- K will denote a real positive constant of which the value may change from line to line.

2 The equation

The Boltzmann equation we consider describes the evolution of the density f(t, v) of par-
ticles with velocity v ∈ IR2 at time t in a rarefied homogeneous 2-dimensional gas:

∂f

∂t
= Q(f, f), (2.1)

where Q is a quadratic collision kernel preserving momentum and kinetic energy, of the
form

Q(f, f)(t, v) =
∫
v∗∈IR2

∫ π

θ=−π

(
f(t, v′)f(t, v′∗)− f(t, v)f(t, v∗)

)
B(|v − v∗|, θ) dθdv∗
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with
v′ = v +A(θ)(v − v∗) ; v′∗ = v −A(θ)(v − v∗) (2.2)

and

A(θ) =
1
2

(
cos θ − 1 − sin θ

sin θ cos θ − 1

)
Remark 2.1 For each θ, ϕ ∈ [−π, π] \ {0},

|A(θ)| ≤ K|θ| and |A(θ)−A(ϕ)| ≤ K|θ − ϕ|. (2.3)

The cross-section B is a positive function. If the molecules in the gas interact according to
an inverse power law in 1/rs with s ≥ 2, then B(z, θ) = z

s−5
s−1d(|θ|) where d ∈ L∞loc(]0, π])

and d(θ) ∼ K(s)θ−
s+1
s−1 when θ goes to zero, for some K(s) > 0. Physically, this explosion

comes from the accumulation of grazing collisions.

In this general (spatially homogeneous) setting, the Boltzmann equation is very difficult to
study. A large litterature deals with the non physical equation with angular cutoff, namely
under the assumption

∫ π
0 B(z, θ)dθ <∞. More recently, the case of Maxwell molecules, for

which the cross section B(z, θ) = β(θ) only depends on θ, has been much studied without
the cutoff assumption. In the Maxwell context, Tanaka, [?] was considering the case where∫ π
0 θβ(θ)dθ <∞, and Desvillettes, [?], Desvillettes, Graham, Méléard, [?] and Fournier, [?]

have worked under the general physical assumption
∫ π
0 θ

2β(θ)dθ < +∞.

We will consider here cross sections of the following type:

Hypothesis (R): the cross section can be written as

B(z, θ) = ψ(z)β(θ), with (2.4)

1) β even from [−π, π]/{0} → IR+ and such that
∫ π
−π |θ|β(θ)dθ <∞;

2) ψ positive function and locally Lipschitz continuous and ψ(z) ≤ M , where
M ∈ IR+.

We will see that our approach does not allow us to consider functions β with just a second
order moment. In a work in preparation we consider another case for which β just inte-
grates θ2, but with more restrictive assumption on z for the cross-section. Here, hypotheses
on ψ are not very stringent, except its boundedness. In particular, the strict positivity of
ψ outside 0 is not required.

Equation (??) has to be understood in a weak sense, i.e. f is a solution of the equation if
for each test function φ ∈ C1

b (IR
2),

∂

∂t
< f, φ >=< Q(f, f), φ >

where < ., . > denotes the duality bracket between L1 and L∞ functions. A standard
integration by parts shows that f satisfies for each φ ∈ C1

b (IR
2)

∂

∂t

∫
IR2

f(t, v)φ(v)dv =
∫
IR2×IR2

∫ π

−π
(φ(v′)− φ(v)) (2.5)

ψ(|v − v∗|)β(θ)dθf(t, v)dvf(t, v∗)dv∗
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We have conservation of mass in (??), which leads to the following definition of solutions
of (??).

Definition 2.2 Consider P0 a probability measure on IR2. We say that a probability mea-
sure flow (Pt)t is a measure-solution of the Boltzmann equation (??) with initial data P0 if
for each φ ∈ C1

b (IR
2)

〈φ, Pt〉 = 〈φ, P0〉+
∫ t

0
〈Kφ

β (v, v∗), Ps(dv)Ps(dv∗)〉 ds, (2.6)

where Kφ
β is defined by

Kφ
β (v, v∗) =

∫ π

−π

(
φ (v +A(θ)(v − v∗))− φ(v)

)
ψ(|v − v∗|)β(θ)dθ. (2.7)

The probabilitistic approach consists in considering (??) as the evolution equation of the
flow of marginals of a Markov process. The law of this process will be solution of the
following nonlinear martingale problem.

Definition 2.3 Let B be a cross section satisfying Hypothesis (R) and let P0 belong to
P2(IR2). We say that P ∈ P2(IDT ) solves the nonlinear martingale problem (MP) starting
at P0 if for X the canonical process under P , the law of X0 is P0 and for any φ ∈ C1

b (IR
2),

φ(Xt)− φ(X0)−
∫ t

0
〈Kφ

β (Xs, v∗), Ps(dv∗)〉ds (2.8)

is a square-integrable martingale. Here, the nonlinearity appears through Ps which denotes
the marginal of P at time s.

Remark 2.4 Taking expectations in (??), we remark that if P is a solution of (MP ), then
its marginal flow (Pt)t is a measure-solution of the Boltzmann equation, in the sense of
Definition ??.

Our first aim is to prove the existence of a solution to the martingale problem (??) and then
to obtain the existence of a measure-solution to the Boltzmann equation. Our method gives
no hope to obtain a uniqueness result. We will also introduce a specific nonlinear stochastic
differential equation giving a pathwise version of the probabilistic interpretation. We will
study the existence of solutions of this equation, first in a weak sense under Hypothesis (R)
and next in a strong sense under more stringent assumptions.
Then we will use this pathwise probabilistic interpretation of the solutions to show that
these solutions can be obtained as limits of the laws of stochastic interacting particle sys-
tems, and we will deduce a very simple Monte-Carlo algorithm of simulation for the solu-
tions.

3 A pathwise approach

Let us now consider two probability spaces : the first one is the abstract space
(Ω,F , {Ft}t∈[0,T ], P ) and the second one is ([0, 1],B([0, 1]), dα). In order to avoid any
confusion, the processes on ([0, 1],B([0, 1]), dα) will be called α-processes, the expectation
under dα will be denoted by Eα, and the laws Lα.
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Notation 3.1 We will denote by L2
T the space of IDT -valued processes Y such that

E(supt∈[0,T ] |Yt|2) < +∞ and by L2
T − α the space of α-processes W such that

Eα(supt∈[0,T ] |Wt|2) < +∞.

Definition 3.2 We will say that (V,W,N, V0) is a solution of (SDE) if
(i) (Vt) is an adapted L2

T -process,
(ii) (Wt) is a L2

T − α-process,
(iii) N(ω, dt, dα, dz, dθ) is a {Ft}-Poisson measure on [0, T ]× [0, 1]× [0,M ]× [−π, π] with
intensity m(dt, dα, dz, dθ) = dtdαdzβ(θ)dθ,
(iv) V0 is a square integrable variable independent of N ,
(v) L(V ) = Lα(W ),
(vi)

Vt = V0 +
∫ t

0

∫ 1

0

∫ M

0

∫ π

−π
A(θ)(Vs− −Ws−(α))1{z≤ψ(|Vs−−Ws−(α)|)}N(ds, dα, dz, dθ) (3.9)

This definition can be understood through the following remark.

Remark 3.3 If (V,W,N, V0) is a solution of (SDE), one easily proves, by using the Itô
formula, that L(V ) = Lα(W ) is a solution of (MP ) with initial law Q0 = L(V0), and thus
{L(Vs)}s∈[0,T ] is a measure-solution of the Boltzmann equation (??) with initial data Q0.

We are now able to state some existence results, which are the main of this section.

Theorem 3.4 Assume that Q0 is a probability measure on IR2 admitting a moment of
order 2, and that B(x, θ) = ψ(x)β(θ) is a cross-section satisfying Hypothesis (R). Then
1) The nonlinear martingale problem (MP ) with initial data Q0 admits a solution Q ∈
P2(IDT ).
2) Let Q be any solution of (MP ). Let W be any α-process such that Lα(W ) = Q. On
an enlarged probability space from the canonical space (IDT ,DT , Q) there exist a Poisson
measure N with intensity m and an independent square integrable variable V0 with law Q0

such that (X,W,N, V0) is solution of (SDE), where X is the canonical process. (That
means that there exists a weak solution to (SDE)).
3) If one assumes moreover that:

Hypothesis (CL): the function ψ is locally Lipschitz continuous, with a Lip-
schitz constant linearly increasing, i.e.

|ψ(x)− ψ(y)| ≤ K|x− y|(1 + |x|+ |y|),

then there exists a strong solution to the nonlinear stochastic differential equation (SDE):
for each probability space (Ω,F , {Ft}t∈[0,T ], P ), for each Poisson measure N with intensity
m and each square integrable variable V0 independent of N , there exist V,W such that
(V,W,N, V0) is solution of (SDE).

Remark 3.5 There is no assumption on Q0, except the existence of a second order mo-
ment. This allows in particular to consider degenerate initial data, as Dirac measures.
The point 1) in Theorem ?? exhibits in particular a measure-solution to the Boltzmann
equation (??) for every initial data Q0 ∈ P2(IR2). The point 2) in Theorem ?? gives
a stochastic “pathwise” interpretation of the solution which might be helpful to study this
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measure-solution. Of course, the presence of the indicator function does not seem very good,
but we might hope to obtain some existence, regularity, or positivity of function solutions
of the Boltzmann equation in this non Maxwellian situation, by using stochastic analysis
arguments. The point 3) in Theorem ?? might be useful in situations where a ”strong”
existence is needed, as for examples coupling techniques.

Let us now introduce some notation. We denote by ϕ the function from IR2 × IR2 × [0,M ]
into IR2 defined as

ϕ(v, w, z) = (v − w)1{z≤ψ(|v−w|)}. (3.10)

Notice that the collision kernel Kφ
β defined in (??) can be written as

Kφ
β (v, v∗) =

∫ π

−π

∫ M

0

(
φ (v +A(θ)ϕ(v, v∗, z))− φ(v)

)
dzβ(θ)dθ (3.11)

and that (??) can be written as

Vt = V0 +
∫ t

0

∫ 1

0

∫ M

0

∫ π

−π
A(θ)ϕ(Vs−,Ws−(α), z)N(ds, dα, dz, dθ) (3.12)

We now give the proof of Theorem ?? which is obtained in many steps.

We first introduce, for n ∈ IN∗, the functions ϕn from IR2× IR2× [0,M ] into IR2 defined by

ϕn(v, w, z) = ϕ(v ∧ n ∨ (−n), w ∧ n ∨ (−n), z) (3.13)

where v∧n (resp. v∨ (−n)), denotes the vector (v1∧n, v2∧n) (resp. (v1∨ (−n), v2∨ (−n)),
if v = (v1, v2)). The functions ϕ and ϕn satisfy the following properties.

Lemma 3.6 Under (R),∫ M

0
|ϕ(v, w, z)|dz ≤M |v − w| ;

∫ M

0
|ϕn(v, w, z)|dz ≤M |v − w|∫ M

0
|ϕ(v, w, z)− ϕ(v′, w′, z)|dz ≤ M(|v − v′|+ |w − w′|)

+|v − w|(ψ(|v − w|)− ψ(|v′ − w′|))∫ M

0
|ϕn(v, w, z)− ϕn(v′, w′, z)|dz ≤ Kn(|v − v′|+ |w − w′|)

with Kn a constant depending on n.

The proof of this lemma is easy and left to the reader.

Similarly to Definition ??, we consider the equation (SDE)n defined by replacing ϕ by ϕn:

V n
t = V0 +

∫ t

0

∫ 1

0

∫ M

0

∫ π

−π
A(θ)ϕn(V n

s− −Wn
s−(α))N(ds, dα, dz, dθ)

with L(V n) = Lα(Wn)

In the same way, we will denote by Kn,φ
β the kernel defined as (??) with ϕ replaced by ϕn.
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Proposition 3.7 Assume (R) and consider Q0 ∈ P2(IR2). For each pair (V0, N), V0 being
with law Q0 and N a Poisson measure with intensity m, the equation (SDE)n admits a
solution (V n,Wn, N, V0) and

sup
n≥1

E( sup
t∈[0,T ]

|V n
t |2) < +∞. (3.14)

Moreover, Qn = L(V n) = Lα(Wn) is the unique solution of the nonlinear martingale
problem (MP )n wich is similar to (??) with Kφ

β (v, v∗) replaced by Kn,φ
β (v, v∗).

Proof. We fix n ≥ 1, V0 with law Q0 and independent of a Poisson measure N with
intensity measure m. Following Tanaka [?], Desvillettes-Graham-Meleard [?] or Fournier
[?], we construct a specific Picard iteration which allows us to obtain the existence of a pair
(V n,Wn) such that (V n,Wn, N) is a solution of (SDE)n. We first consider the process
X0 identically equal to V0, then consider Y 0 defined on [0, 1] such that Lα(Y 0) = L(X0).
By induction, assuming that X0, X1, ..., Xk and Y 0, Y 1, ..., Y k are constructed, one defines
Xk+1 by

Xk+1
t = V0 +

∫ t

0

∫ 1

0

∫ M

0

∫ π

−π
A(θ)ϕn(Xk

s−, Y
k
s−(α), z)N(ds, dα, dz, dθ)

and one considers on [0, 1] a process Y k+1 such that

Lα(Y 0, Y 1, ..., Y k+1) = L(X0, X1, ..., Xk+1)

and so on. One proves easily thanks to Lemma ?? that for each fixed n,

E( sup
t∈[0,T ]

|Xk+1
t −Xk

t |)

≤
∫ t

0

∫ 1

0

∫ M

0

∫ π

−π
|A(θ)|E(|ϕn(Xk

s−, Y
k
s−(α), z)− ϕn(Xk−1

s− , Y k−1
s− (α), z)|)dsdαdzβ(θ)dθ

≤ Kn

∫ t

0
E(sup

u≤s
|Xk

u −Xk−1
u |)ds. (3.15)

We deduce easily that there exist an adapted process X with E(supt∈[0,T ] |Xt|) < ∞ and
a α-process Y with Lα(Y ) = L(X) and E(supt∈[0,T ] |Xk

t −Xt|) = Eα(supt∈[0,T ] |Y k
t − Yt|)

tends to zero as k tends to infinity. Then (X,Y,N, V0) is solution of (SDE)n. Moreover,
since |A(θ)| ∈ L1∩L∞(β(θ)dθ), and thanks to Lemma ??, one proves that since L(V0) = Q0

admits a second order moment,

E(sup
t≤T

|Xt|2) < +∞.

Now, let us rename X = V n and denote by Qn the law of V n.
The proof of the uniqueness in law of a solution of (SDE)n is obtained by a coupling
argument, exactly as in [?] Theorems 3.6-2) and 3.7. One first proves that the law L(V n) =
Lα(Wn) of the solution of the nonlinear stochastic differential equation (SDE)n obtained
by the Picard iteration does not depend on the possible choices for Ω, V0, N and next, one
shows that if (U,W, N̂ , V0) is a solution of (SDE)n, then L(U) = L(V n) = Qn, where
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(V n, Y, N̂ , V0) is the Picard iteration constructed on the probability space associated with
V0 and N̂ .
Now, to obtain the uniqueness of the solution of (MP )n, consider another solution R of
(MP )n. One shows, by using a comparison between the Itô formula and the martingale
problem, that the canonical process X is under R a pure jump process and that its Lévy
measure is the image measure of the measure m(ds, dα, dz, dθ) = dsdαdzβ(θ)dθ by the
mapping (θ, α, z, s) 7→ A(θ)ϕ(Xs−,Ws−(α), z), where the process Ws(α) is a process chosen
on the probability space [0, 1] with law R. Then, by using the representation theorem proved
in Grigelionis [?] and El Karoui-Lepeltier [?] (see also [?]), we know that there exist on an
enlarged probability space a square integrable variable V0 and an independent point Poisson
measure N with intensity m such that (X,W,N, V0) is a solution of (SDE)n. Then by the
uniqueness proved above, R is equal to Qn and the martingale problem (MP )n has a unique
solution.
It remains to prove (??). Since

∫M
0 |ϕn(v, w, z)|dz ≤ K(|v| + |w|), with K independent of

n, since Lα(Wn) = L(V n), we show that

E(sup
s≤t

|V n
s |2) ≤ E(|V0|2) +K

∫ t

0
E(sup

u≤s
|V n
u |2)ds

where K does not depend on n, and Gronwall’s lemma allows to conclude. 4

Proposition 3.8 Under hypothesis (R), still assuming that Q0 ∈ P2(IR2), the sequence of
probability measures (Qn)n on IDT obtained in proposition ?? is tight for the weak conver-
gence on P2(IDT ), and any limit point Q of (Qn)n is solution of the nonlinear martingale
problem (MP ).

Proof. 1) We prove that the sequence Qn is tight for the weak convergence on P2(IDT ).
Thanks to (??), we just need to verify the Aldous criterion. We have, for stopping times τ
and τ ′ with 0 ≤ τ ≤ τ ′ ≤ τ + δ,

E(|V n
τ ′ − V n

τ |) ≤ E

(∫ τ ′

τ

∫ 1

0

∫ M

0

∫ π

−π
|A(θ)||ϕn(V n

s−,W
n
s−(α), z)|β(θ)dθdzdαds

)

≤ KE

(∫ τ ′

τ

∫ 1

0

(
|V n
s−|+ Eα(|Wn

s−(α)|)
)
dαds

)
( since β integrates |θ|)

≤ KE

(
(τ ′ − τ) sup

t≤T
|V n
t |
)

+KE(τ ′ − τ)Eα(sup
t≤T

|Wn
t |) ≤ Kδ

by (??), where K is independent of n. Then we deduce that for each η > 0,

sup
n

sup
{τ,τ ′; 0≤τ≤τ ′≤τ+δ}

P (|V n
τ ′ − V n

τ | ≥ η)

tends to 0 as δ tends to 0, and the Aldous criterion is satisfied. Hence the sequence (Qn)
is tight.
2) Let us now identify each limit point of (Qn). Let Q be a limit value of this sequence.
We consider the canonical process (Xt)t on IDT and for φ ∈ C1

b (IR
2), t > 0, we set

Hφ
t = φ(Xt)− φ(X0)−

−
∫ t

0

∫ M

0

∫ π

−π

∫
w∈IR2

(φ(Xu +A(θ)ϕ(Xu, w, z))− φ(Xu))Qu(dw)β(θ)dθdzdu
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and Hn,φ
t denotes a similar quantity with ϕn instead of ϕ and Qn instead of Q. The

probability measure Q will be a solution of the nonlinear martingale problem (MP ) with
initial law Q0 if it satisfies for each 0 ≤ s1 < ... < sk < s < t ≤ T , each g1, ...gk ∈ Cb(IR2),

< (Hφ
t −Hφ

s )g1(Xs1)...gk(Xsk
), Q >= 0. (3.16)

Since Qn is solution of (MP )n, we already know that

< (Hn,φ
t −Hn,φ

s )g1(Xs1)...gk(Xsk
), Qn >= 0.

Since the sequence (Qn) satisfies the Aldous criterion, the law Q is the law of a quasi-càg
process (cf. [?] p. 321). Then the mapping F : x 7→ (φ(xt) − φ(xs))g1(xs1)...gk(xsk

) is
Q-a.e. continuous and bounded from IDT to IR. Thus < F,Qn > tends to < F,Q > as n
tends to infinity. Next, let us prove that αn defined by

<
( ∫ t

s

∫ M

0

∫ π

−π

∫
IR2

(φ(Xu +A(θ)ϕ(Xu, w, z))− φ(Xu +A(θ)ϕn(Xu, w, z)))

dzQnu(dw)β(θ)dθdu
)
g1(Xs1)...gk(Xsk

), Qn >

tends to 0 as n tends to infinity. We have:

|φ(Xu +A(θ)ϕ(Xu, w, z))− φ(Xu +A(θ)ϕn(Xu, w, z))|

≤ ‖∇φ‖∞|A(θ)|
∫ M

0
|ϕ(Xu, w, z)− ϕn(Xu, w, z)|dz

≤ K|θ|(|w|+ |Xu|)(1{|Xu|≥n} + 1{|w|≥n}).

Then

|αn| ≤ KΠi=1,...,k‖gi‖∞ <

∫ t

s

∫
IR2

(|w|+ |Xu|)(1{|Xu|≥n} + 1{|w|≥n})Q
n
u(dw)du,Qn >

≤ K

∫
x∈IDT

∫
y∈IDT

(
sup
t≤T

|x(t)|+ sup
t≤T

|y(t)|
)(

1{supt≤T |xt|≥n} + 1{supt≤T |yt|≥n}
)

Qn(dx)Qn(dy)

≤ K

((∫
x∈IDT

(sup
t≤T

|x(t)|)Qn(dx)
)
×
(∫

x∈IDT

(
1{supt≤T |xt|≥n}

)
Qn(dx)

)
+
∫
x∈IDT

(sup
t≤T

|x(t)|)
(
1{supt≤T |xt|≥n}

)
Qn(dx)

)
.

By (??), we show that
∫
x∈IDT

(supt≤T |x(t)|)Qn(dx) is bounded uniformly in n, that
∫
x∈IDT

(
1{supt≤T |xt|≥n}

)
Qn(dx)

tends to 0 as n tends to infinity, and by Cauchy-Schwarz inequality that
∫
x∈IDT

(supt≤T |x(t)|)
(
1{supt≤T |xt|≥n}

)
Qn(dx)

tends to 0 as n tends to infinity. Then αn tends to 0 as n tends to infinity.
It remains to prove that < G(x, y), Qn(dx)⊗Qn(dy) > tends to < G(x, y), Q(dx)⊗Q(dy) >,
where

G(x, y) =

(∫ t

s

∫ M

0

∫ π

−π
(φ(xu +A(θ)ϕ(xu, yu, z))− φ(xu))β(θ)dθdzdu

)
g1(xs1)...gk(xsk

).
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The measure Qn⊗Qn converges obviously to Q⊗Q. The function G is Q⊗Q-a.e. continuous
by a similar argument as before but not bounded. Properties in Lemma ?? give that

|G(x, y)| ≤ K

(
sup
t≤T

|x(t)|+ sup
t≤T

|y(t)|
)
.

Then, for each fixed real positive number C, the sequence < G ∧ C,Qn ⊗Qn > converges
to < G ∧ C,Q⊗Q >. We remark that

|G(x, y)|1{|G(x,y)|≥C} ≤ K

(
sup
t≤T

|x(t)|+ sup
t≤T

|y(t)|
)

1{supt≤T |x(t)|+supt≤T |y(t)|≥C/K}

≤ K

(
sup
t≤T

|x(t)|+ sup
t≤T

|y(t)|
)(

1{supt≤T |x(t)|≥C/2K} + 1{supt≤T |y(t)|≥C/2K}
)
.

We have already seen that

sup
n
<

(
sup
t≤T

|x(t)|+ sup
t≤T

|y(t)|
)(

1{supt≤T |x(t)|≥C/2K} + 1{supt≤T |y(t)|≥C/2K}
)
, Qn ⊗Qn >

tends to 0 as C tends to infinity, thanks to (??). Now the conclusion is obvious and the
proposition is proved. 4

Remark 3.9 Proposition ?? proves the first point of Theorem ??.

Let us now deduce the point 2) of Theorem ??.

Proposition 3.10 Assume (R) and Q0 ∈ P2(IR2). Let us consider the canonical space
IDT , X the canonical process and Q the solution of (MP ) obtained in Proposition ??.
Consider a α-process W such that Lα(W ) = Q, then there exist a Poisson measure N with
intensity m on an enlarged probability space and an independent square integrable variable
V0 such that (X,W,N, V0) is a solution of (SDE).

Proof. The proof is exactly similar to the end of that of Proposition ??. Since Q is
solution of a martingale problem, the canonical process X is a semimartingale under Q.
Then a comparison between the Itô formula and the martingale problem proves that X is
a pure jump process and that its Lévy measure is the image measure of the measure m
on [0, T ]× [0, 1]× [0,M ]× [−π, π] by the mapping (s, α, z, θ) 7→ A(θ)ϕ(Xs−,Ws−(α), z) =
A(θ)(Xs− −Ws−(α))1{z≤ψ(|Xs−−Ws−(α)|)}. Then always by the representation theorem for
point measures [?], there exist on an enlarged probability space a square integrable variable
V0 and a point Poisson measure N with intensity m such that (X,W,N, V0) is a solution
of (SDE). 4

We are now interested in the pathwise study of the stochastic differential equation (SDE)
under Hypothesis (CL). Before to study this nonlinear SDE, let us introduce the associated
linearized SDE.

Definition 3.11 1) Let be given Z a L2
T − α-process, V0 a square integrable variable and

N a Poisson point measure with intensity m, independent of V0 on a fixed probability space
Ω. The classical SDE

Yt = V0 +
∫ t

0

∫ 1

0

∫ M

0

∫ π

−π
A(θ)ϕ(Ys−, Zs−(α), z)N(ds, dα, dz, dθ)

10



is denoted by (SDE)Z .
2) Let X denote the canonical process on IDT . Let us consider R ∈ P2(IDT ). Then (MP )R
denotes the classical martingale problem: for all φ ∈ C1

b (IR
2),

φ(Xt)− φ(X0)−
∫ t

0
< Kφ

β (Xs, .), Rs > ds

is a R-martingale.

Remark 3.12 By using the Itô formula, one proves easily that if the process Y is solution
of (SDE)Z , then L(Y ) is solution of (MP )L(Z).

Proposition 3.13 Let us assume hypotheses (R) and (CL) and Q0 ∈ P2(IR2) and let us
consider a L2

T − α-process Z. Then the stochastic differential equation (SDE)Z admits a
unique solution Y in L2

T . Moreover, L(Y ) is the unique solution of (MP )L(Z).

Proof. We remark that the coefficients are locally Lipschitz continuous in the Y -variable
and with linear growth. Then the proof is relatively standard. Indeed,∫ M

0
|ϕ(v, w, z)− ϕ(v′, w, z)|dz ≤

∫ M

0
|(v − w)− (v′ − w)|dz

+
∫ M

0
|v − w|1{ψ(|v−w|)≤z≤ψ(|v′−w|)}dz

≤ K|v − v′|
(
1 + |v|2 + |v′|2 + |w|2

)
.

We fix n. Let us introduce ϕ̄n(v, w, z) = ϕ(v∧n∨(−n), w, z). We now define the stochastic
differential equation (SDE)nZ in a similar way than (SDE)Z , but with ϕ̄n instead of ϕ.
One can easily show that if Y 1 and Y 2 are two L2

T -processes, then

E

(∫ t

0

∫ 1

0

∫ M

0

∫ π

−π
|A(θ)||ϕ̄n(Y 1

s−, Zs−(α), z)− ϕ̄n(Y 2
s−, Zs−(α), z)|N(ds, dα, dz, dθ)

)

≤ KnE

(∫ t

0

∫ 1

0
|Y 1
s − Y 2

s |(1 + |Zs−(α)|2)dαds
)

≤ Kn

∫ t

0
E
(
|Y 1
s − Y 2

s |
)
ds.

Then for each n, one proves in a standard way that there exists a unique solution Y n

to (SDE)nZ . One remarks moreover that there exists a constant K such that for each n,∫M
0 |ϕ̄n(v, w, z)|dz ≤ K(|v|+ |w|), from which one deduces, using the fact that
Eα(supt≤T |Zt|2) <∞, that

sup
n
E(sup

t≤T
|Y n
t |) <∞.

Let us now define the stopping time τn = inf{t > 0, |Y n
t | ≥ n} ∧ T . It is clear that

the sequence τn converges to T almost surely, as n tends to infinity. By the uniqueness
argument for the solution of (SDE)nZ , one obtains

Y n
τn∧t = Y n+1

τn∧t ,

which allows us to define the process Y in such a way that Yτn∧t = Y n
τn∧t for each n. That

gives finally the existence and uniqueness for a solution of (SDE)Z , and as corollary the

11



existence and uniqueness for (MP )L(Z). 4

We are now able to prove the last point 3) of Theorem ??. Let us consider a solution Q
of (MP ), obtained in Proposition ??. Let us consider on the probability space [0, 1] a α-
process (W (α)) with law Q. Let now V be the solution of (SDE)W . Then L(V ) is solution
of (MP )Q. But we just have showed in the previous proposition that this martingale
problem has a unique solution. Since Q is already a solution of (MP )Q, we deduce that
L(V ) = Q, which allows us to conclude that (V,W,N, V0) is a solution of (SDE).

4 A stochastic particle approximation

In this part, we will introduce some stochastic particle systems and will prove a pathwise
propagation of chaos, which will imply the convergence of the empirical measures of the
systems to a solution of (??). This will be the theorical fundation of the Monte-Carlo
algorithm given in the next section.
To define a particle system, we first need to “cutoff” the cross-section, for any particle to
have a finite number of collisions before T . Namely we consider

Bl(z, θ) = ψ(z)βl(θ)

where

βl(θ) = β(θ)1{|θ|≥ 1
l
}, (4.1)

β and ψ satisfying the hypothesis (R). For the moment, the real number l > 0 is fixed, and
we set ‖ βl ‖1=

∫ π
−π βl(θ)dθ.

The natural interpretation of the nonlinearity in (??) leads to a simple mean field interacting
system but a physical interpretation of the equation leads also naturally to a binary mean
field interacting particle system. In both cases, these n-particle systems are pure-jump
Markov processes with values in (IR2)n and with generators defined for φ ∈ Cb((IR2)n) by

1
n

∑
1≤i,j≤n

∫ π

−π

∫ M

0

(
φ(vn + ei.A(θ)(vi − vj)1{z≤ψ(|vi−vj |)})− φ(vn)

)
dzβl(θ)dθ (4.2)

for the simple mean-field interacting system and by

1
n

∑
1≤i,j≤n

∫ π

−π

∫ M

0

1
2

(
φ(vn + ei.A(θ)(vi − vj)1{z≤ψ(|vi−vj |)}

+ej.A(θ)(vj − vi)1{z≤ψ(|vi−vj |)})− φ(vn)
)
dzβl(θ)dθ (4.3)

for the binary mean-field interacting system. In these formulas, vn = (v1, ..., vn) denotes
the generic point of (IR2)n and ei : h ∈ IR2 7→ ei.h = (0, ..., 0, h, 0, ..., 0) ∈ (IR2)n with h at
the i-th place.
Both cases can be treated indifferently in a probabilistic point of view. The first particle
system can be related to the Nanbu algorithm (cf. [?]) and is as simple as possible. The
second one can be related to the Bird algorithm (cf. [?]). Its main interest is that it
conserves momentum and kinetic energy. Moreover a set of numerical experiments shows
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it looks faster and more precise. We thus consider from now on the binary mean-field
system. We denote by

V l,n = (V l,1n, ..., V l,nn)

the Markov process defined by (??).
We consider as in the previous section a pathwise representation of such processes using
Poisson point measures. More precisely, we introduce a family of independent Poisson point
measures (N l,ij)1≤i<j≤n on [0, T ]× [0,M ]× [−π, π] with intensities 1

2β
l(θ)dθdzdt. For i > j,

we set N l,ij = N l,ji. Now we consider the process (V l,in)1≤i≤n solution of the following
stochastic differential equation:

V l,in
t = V i

0 +
1
n

n∑
j=1

∫ t

0

∫ M

0

∫ π

−π
A(θ)(V l,in

s− − V l,jn
s− )1{z≤ψ(|V l,in

s− −V l,jn
s− |)}N

l,ij(dθ, dz, ds).

(4.4)

We construct it easily by working recursively on each interjump interval of the point process
(N l,ij)1≤i,j≤n. It is a n-dimensional Markov process with generator the one described above.
Let us denote

µl,n =
1
n

n∑
i=1

δV l,in

the empirical measure of this system and by (πn,l)n the sequence of laws of µl,n, which are
probability measures on P(ID([0, T ], IR2)).

Theorem 4.1 Assume (R) and Q0 ∈ P2(IR2). Let (V i
0 )i≥1 be i.i.d. Q0-distributed random

variables. Then the sequence (πn,l)l,n is uniformly tight for the weak convergence and any
limit point charges only probability measures which are solutions of (MP ). Thus any limit
point (for the convergence in law) of the sequence (µl,n) is a solution of (MP ).

Proof. To prove this theorem, we will show
1) the tightness of (πn,l)n in P(P(ID([0, T ], IR2))),
2) the identification of the limiting values of (πn,l)l,n as solutions of the nonlinear martingale
problem (MP ).
One knows (cf. [?] Lemma 4.5) that the tightness of (πn,l)l,n is equivalent to the tightness
of the laws of the semimartingales V l,1n belonging to P(ID([0, T ], IR2)). This tightness can
be proved by showing the tightness of the law of the supremum of |V l,1n

t | on [0, T ] and the
the Aldous criterion for V l,1n.
One easily proves by a good use of Burkholder-Davis-Gundy and Doob’s inequalities for
(??) and thanks to (R) that

sup
l,n

E(sup
t≤T

|V l,1n
t |2) < +∞. (4.5)

from which we deduce without difficulty the tightness of the laws of V l,1n and hence the
tightness of the sequence (πl,n).
Let us now prove that all the limit values are solutions of the nonlinear martingale problem
(MP ). Consider π∞ ∈ P(P(ID([0, T ], IR2))) a limit value of (πl,n). It is the limit point of
a subsequence we still denote by (πl,n).
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For φ ∈ C1
b (IR

2), 0 ≤ s1, ..., sk ≤ s < t, g1, ..., gk ∈ Cb(IR2), Q ∈ P(ID([0, T ], IR2)) and for
X the canonical process on ID([0, T ], IR2), we set

F (Q) =
〈
g1(Xs1)...gk(Xsk

)
(
φ(Xt)− φ(Xs)

−
∫ t

s

∫ M

0

∫ π

−π

∫
IR2

(
φ(Xu +A(θ)ϕ(Xu, w, z))− φ(Xu)

)
Qu(dw)β(θ)dθdzdu

)
, Q

〉
=< g1(Xs1)...gk(Xsk

)(Hφ
t −Hφ

s ), Q > (4.6)

with the notation used in the proof of Proposition (3.8).
Our aim is to prove that < |F |, π∞ >= 0. The mapping F is not continuous since the
projections X 7→ Xt are not continuous for the Skorohod topology. However, for any
Q ∈ P(ID([0, T ], IR2)), X 7→ Xt is Q-almost surely continuous for all t outside an at most
countable set DQ, and then F is continuous at the point Q if s, t, s1, ..., sk are not in DQ.
Here we use the continuity and the boundedness of φ, g1, ..., gk and also the continuity of
(q, v) 7→

∫M
0

∫ π
−π
∫
IR2(φ(v+A(θ)ϕ(v, w, z))−φ(v))q(dw)β(θ)dθdz on P(ID([0, T ], IR2))×IR2.

Now one can show that the set D of all t for which π∞(Q, t ∈ DQ) > 0 is again at most
countable. Thus, if s, t, s1, ..., sk are in Dc, F is π∞-a.s. continuous. Then,〈

F 2, π∞
〉

= lim
l,n

〈
F 2, πl,n

〉
But

〈
|F |, πl,n

〉
≤
〈
|F l|, πl,n

〉
+
〈
|F − F l|, πl,n

〉
where F l is defined as F with βl instead of

β.
Firstly,〈

(F l)2, πl,n
〉

= E((F l(µl,n))2)

= E

( 1
n

n∑
i=1

(M l,iφ
t −M l,iφ

s )g1(V l,in
s1 )...gk(V l,in

sk
)

)2


=
1
n
E

((
(M l,1φ

t −M l,1φ
s )g1(V l,1n

s1 )...gk(V l,1n
sk

)
)2
)

(4.7)

+
n− 1
n

E
(
(M l,1φ

t −M l,1φ
s )(M l,2φ

t −M l,2φ
s )g1(V l,1n

s1 )...gk(V l,1n
sk

)g1(V l,2n
s1 )...gk(V l,2n

sk
)
)

where M l,iφ is the martingale defined by

M l,iφ
t = φ(V l,in

t )− φ(V i
0 )

− 1
n

n∑
j=1

∫ t

0

∫ M

0

∫ π

−π

(
φ(V l,in

s +A(θ)ϕ(V l,in
s , V l,jn

s , z))− φ(V l,in
s )

)
βl(θ)dθdzds

and with Doob-Meyer process given by

< M l,iφ >t=
1
n

n∑
j=1

∫ t

0

∫ M

0

∫ π

−π

(
φ(V l,in

s +A(θ)ϕ(V l,in
s , V l,jn

s , z))− φ(V l,in
s )

)2

βl(θ)dθdzds

and for i 6= j,

< M l,iφ,M l,jφ >t =
1
n

∫ t

0

∫ M

0

∫ π

−π

(
φ(V l,in

s +A(θ)ϕ(V l,in
s , V l,jn

s , z))− φ(V l,in
s )

)
(
φ(V l,jn

s +A(θ)ϕ(V l,jn
s , V l,in

s , z))− φ(V l,jn
s )

)
βl(θ)dθdzds.
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The right terms in (??) go to 0 thanks to the expression of the Doob-Meyer process,
to the uniform integrability proved in (??) and thanks to hypothesis (R). Moreover the
convergence is uniform on l. Hence

lim
n
〈|F l|, πl,n〉 = 0,uniformly in l.

Otherwise,

〈|F − F l|, πl,n〉 = E(|F − F l|(µl,n))

= E

(∣∣∣∣〈 ∫ t

s

∫ M

0

∫ π

−π

∫
IR2

(
φ(Xu +A(θ)ϕ(Xu, w, z))− φ(Xu)

)
µl,nu (dw)

(β(θ)− βl(θ))dθdzdu, µl,n
〉∣∣∣∣)

≤ Kl sup
l,n

E(sup
t≤T

〈|v|, µl,nt 〉) ≤ Kl sup
l,n

(
E(sup

t≤T
〈|v|2, µl,nt 〉)

) 1
2

The second term is finite by (??) and Kl = Cte
∫ π
−π |θ||β(θ)− βl(θ)|dθ tends to 0 as l tends

to infinity.
We have then proved that

〈|F |, π∞〉 = 0.

Thus, F (Q) is π∞-a.s. equal to 0, for every s, t, s1, ..., sk outside of the countable set DQ.
It is sufficient to assure that π∞-a.s., Q is solution of the nonlinear martingale problem
(MP ).

Corollary 4.2 Assume (R) and Q0 ∈ P2(IR2) and consider a sequence µlr,nr which con-
verges to Q. Then the probability measure-valued process (µlr,nr

t )t≥0 converges in probability
to the flow (Qt)t≥0 in the space ID([0, T ],P(IR2)) endowed with the uniform topology.

Proof. The flow (Qt)t≥0 is deterministic and continuous. Then the convergence to (Qt)t≥0

is the same for the Skorohod or for the uniform topology. We use an intermediary lemma,
proved in Méléard [?], Lemma 4.8, (see also Léonard [?]).

Lemma 4.3 Let (µn)n be a sequence of random probability measures on IDT which con-
verges in law to a deterministic probability measure Q in P2(IDT ). Let us assume moreover
that

lim
r→0

sup
0≤t≤T

EQ

(
sup

t−r<s<t+r
|∆Xs| ∧ 1

)
= 0 (4.8)

where X is the canonical process on IDT , then the flow (µnt )t≥0 converges in probability to
(Qt)t≥0 in ID([0, T ],P(IR2)) endowed with the uniform topology.

This result is not obvious since in IDT the projections are not continuous for the Skorohod
topology.
Let us verify (??) in our context. We know by the point (ii) of Theorem ?? that X can be
obtained on an enlarged probability space as solution of (??). Then

EQ

(
sup

t−r<s<t+r
|∆Xs| ∧ 1

)
≤ EQ

 ∑
s∈[t−r,t+r]

|∆Xs| ∧ 1
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≤
∫ t+r

t−r

∫ 1

0

∫ M

0

∫ π

−π
|A(θ)||ϕ(Xs−,Ws−(α), z)|β(θ)dθdzdαds

≤ K

∫ t+r

t−r

∫ 1

0
EQ((|Xs− −Ws−(α)|)dαds

≤ KrEQ(sup
t≤t

|Xt|).

But this last quantity tends to 0 as r tends to 0 since EQ(supt≤T |Xt|) is finite. Indeed,
since Q ∈ P2(IDT ), the canonical process X is a L2

T -process under Q. We have the result. 4

We will now explicit the algorithm of simulation.

5 The Monte-Carlo algorithm

We deduce from the above study an algorithm associated with the binary mean-field in-
teracting particle system (Bird’s approach). We could do the same thing with the simple
mean-field interacting particle system (Nanbu’s approach), but the numerical results seem
less efficient.
From now on, the functions ψ and β defining the cross-section B, the initial distribution
Q0, the terminal time T > 0, the size n ≥ 2 of the particle system and the cutoff parameter
l > 0 are fixed. We denote by Bl(z, θ) = ψ(z)βl(θ) the corresponding cross-section with
cutoff. Because of Theorem ??, we simulate a particle system following (??), i.e. the whole
path (V n

t )t∈[0,T ] ∈ ID([0, T ], (IR2)n).
First of all, we assume that V n

0 is simulated according to the initial distribution Q⊗n0 . Then,
we denote by 0 < T1 < ... < Tk the successive jump times until T of a standard Poisson
process with parameter nM‖βl‖1

2 . For example, one simulates independent exponential laws
with this rate which describe the inter-collision time-intervals.
Before the first collision, the velocities do not change, so that we set V n

s = V n
0 for all s < T1.

Let us describe the first collision. We choose at random a couple (i, j) of particles according
a uniform law over {(l,m) ∈ {1, ..., n}2; m 6= l},. We choose z uniformly on the interval
[0,M ], and we finally choose the collision angle following the law βl(θ)

‖βl‖1dθ. Then we set

V n,i
T1

= V n,i
0 +A(θ)(V n,i

0 − V n,j
0 )1{z≤ψ(|V n,i

0 −V n,j
0 |)}

V n,j
T1

= V n,j
0 +A(θ)(V n,j

0 − V n,i
0 )1{z≤ψ(|V n,i

0 −V n,j
0 |)}

V n,l
T1

= V n,l
0 if l 6= {i, j}

Since nothing happens between T1 and T2, we set V n
s = V n

T1
for all s ∈ [T1, T2[.

Iterating this method, we simulate V n
T1
, V n

T2
, ..., V n

Tk
, i.e. the whole path (V n

t )t∈[0,T ], which
was our aim.
Notice that this algorithm is very simple and takes a few lines of program and does not
require to discretize time. It furthermore conserves momentum and kinetic energy.

6 Numerical study.

We now would like to have an idea about the true speeds of convergence of the previous
algorithm in physical situations. In such a situation, the function ψ does not satisfy as-
sumption (R), since it is not bounded. We thus will have to replace ψ by an approximating
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bounded function ψM . Another problem occurs : we do not know if the uniqueness holds
for our Boltzmann equation.
Of course, numerical results will not allow to conclude anything, but we will see that in the
following study, neither the uniqueness nor the boundeness of ψ will be a problem.
Let us now be precise. We consider the following initial distribution of the velocities:

P0(dv) = 1[−1/2,1/2]2(v)dv

and the physical cross section corresponding to interactions in 1/r4:

B(z, θ) = ψ(z)β(θ) = z−1/3θ−5/3

For M > 0 and l > 0, we set

ψM (z) = ψ(z) ∧M and βl(θ) = β(θ)1|θ|≥1/l

Notice that BM = ψMβ satisfies assumption (R) and that BM,l = ψMβl is its correspond-
ing cross section with cutoff.
For each M, l, we denote by {QM,l} the solution of the martingale problem with the cross
section BM,l, obtained by Theorem ??. We know that for each M , each l, {QM,l} is the
limit, as n tends to infinity, of the empirical measures µM,l,n associated with the simulable
empirical particle systems. We also know that for each fixed M , {QM,l}l is tight, and that
any limit point QM is solution of the martingale problem with the cross section BM .

In order to study these many convergences, we have to consider a fixed quantity. The first
idea is to study the moments of the solution of the Boltzmann equation. But in some
situations, we are able to prove the uniqueness of the moments of the solutions of the
Boltzmann equation, although the uniqueness of solutions stays an open problem. We thus
consider the following quantities, for t0 = 1:

mM (t0) =
∫
IR2

|v|4e−|v|2QMt0 (dv) ; mM,l(t0) =
∫
IR2

|v|4e−|v|2QM,l
t0 (dv)

and mM,l,n(t0) =
∫
IR2

|v|4e−|v|2µM,l,n
t0 (dv)

First of all, we study the possible convergence of mM,l(t0), as M and l go to infinity.
We compute numerically this quantity, by using Corollary ??: we are allowed to say that
mM,l ≈< µM,l,5000 >, where < . > denotes an ”empirical” mean over many experiences.
We obtain Figures 1 and 2, which seem to show that mM,l converges, very fastly, to some
quantity, which we denote by m(t0), which equals 0, 02752, and which we hope to be equal
to
∫
IR2 |v|4e−|v|2Qt0(dv), where Q is a (possibly unique) solution of the martingale problem

with the physical cross section B.

Let us mention that in the Maxwellian case, i.e. when ψ ≡ 1, we are able to prove that the
rate of convergence of Ql to Q is (at the worse) proportional to

∫ 1/l
0 θ2β(θ)dθ. Numerical

experiments (see [?]) confirm this speed of convergence. Here, we thus would expect a
speed of convergence of mM,l(t0) to mM (t0) in

∫ 1/l
0 θ2β(θ)dθ ≈ 1/l4/3, at least for M fixed.

We obtain the following values of the error e(l,M), in percent, of mM,l(t0) with respect to
mM (t0):
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Figure 1: ”True value” of mM,10 as a function of ln(1 +M)

Line : 0.02752
Crosses : < µM,10,5000 >≈ mM,10

ln(1 +M)

l 1 2 4 8
e(l, 10) 4.94 1.63 0.51 0.08
e(l, 10)× l4/3 4.94 4.10 3.23 1.28

(We do not consider large values of l, because for l large, the error due to the computations
become larger than that due to the cutoff). We thus see that the speed of convergence
might hold (here it seems to be faster, but this must be related to our choice of the func-
tional |v|4e−|v|2).

We now would like to study the ”mean” speed of convergence of mM,l,n(t0) to mM,l(t0),
as n goes to infinity. We thus denote by eM,l,n the mean error, in percent, of mM,l,n(t0)
(obtained by one simulation), with respect to mM,l(t0). In other words, for < . > the mean
over several experiences,

eM,l,n(t0) =

〈
100×

∣∣∣∣∣mM,l,n(t0)−mM,l(t0)
mM,l(t0)

∣∣∣∣∣
〉

Considering that m10,10(t0) = m100,100(t0) = m(t0) = 0.02752, we obtain Figure 3.
It thus seems that the mean error is in K/

√
n, with the constant K not depending too

much on M and l, at least for M and l sufficiently large.
We have proved, in the Maxwellian case, see [?], a fluctuation Theorem for each l fixed,

18



Figure 2: ”True value” of m10,l as a function of ln(1 + l)

Line : 0.02752
Crosses : < µ10,l,5000 >≈ m10,l

ln(1 + l)

which still seems to hold here, see Figure 3. But once again, the fact that the constant
K/
√
n does not depend on M and l seems to be related to our choice for the quantity

m(t0).
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