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Abstract

In this paper we propose a subsampling estimator for the distribution

of statistics diverging at either known or unknown rates when the under-

lying time series is strictly stationary and strong mixing. Based on our

results we provide a detailed discussion how to estimate extreme order

statistics with dependent data and present two applications to assessing

�nancial market risk. Our method performs well in estimating Value at

Risk and provides a superior alternative to Hill's estimator in operational-

izing Safety First portfolio selection.
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1 Introduction

Politis and Romano (1994) introduced the methodology of \subsampling" and

showed that it leads to valid large-sample statistical inferences in general es-

timation situations and data structures (including i.i.d. and stationary data),

provided that the employed estimator converges to the unknown parameter at

a known rate �n, and possesses (when normalized by the rate �n) a nondegen-

erate asymptotic distribution. Later, Bertail et al. (1999) dispensed with the

assumption that the convergence rate �n is known, by using a preliminary round

of subsampling to consistently estimate the rate �n.

In the present paper, we show how subsampling can be used to approximate

the sampling distributions of diverging (as opposed to converging) statistics

that are particularly useful in the context of �nancial time series and in par-

ticular in assessing �nancial risk. We consider several such statistics in detail

as examples. In addition, we deal with the issues of unknown divergence rate

and/or unknown rate of \escaping means".

To set up the context for our exposition, let Xn = (X1; :::; Xn) be an observ-

able stretch of a (strictly) stationary time series fXt; t 2 Zg which { for simplic-
ity { will be assumed real-valued. The random variables fXt; t 2 Zg are de�ned
on a probability space denoted by (P;
;A), and the �rst marginal distribution

of the fXt; t 2 Zg sequence is denoted by F ; in other words, P (X1 � x) = F (x).

We assume that the time series satis�es a weak dependence condition. In

particular, we impose the strong mixing condition, namely that �X(k) ! 0 as

k !1; the Rosenblatt strong mixing coeÆcients are de�ned as usual by

�X(k) = sup
A;B

jP (A \ B)� P (A)P (B)j;

where A and B are events in the �-algebras generated by fXt; t < 0g and

fXt; t � kg respectively; the case where X1; :::; Xn are independent, identically

distributed (i.i.d.) is an important special case of the general scenario in which

�X(k) = 0 for all k > 0.

A statistic Tn = Tn(X
n) is computed from the data. If Tn estimates an

unknown parameter � = �(P ), and if Tn is consistent for �, then the subsam-

pling methodology of Politis and Romano (1994) immediately applies to provide

a consistent approximation to the sampling distribution of Tn under minimal

assumptions. In addition, if the rate of convergence of Tn to � is a priori un-

known, then it can be estimated via a preliminary round of subsampling and

used in the sampling distribution approximation; see Bertail et al. (1999).

In contrast, we are concerned here with diverging (as opposed to converging)

statistics, i.e., statistics for which1 Tn
P�! 1 as n !1. In particular, we will

1The case where Tn
P
�! �1 can be similarly treated by noting that in that case �Tn

P
�!

1. Note that
P
�! indicates convergence in probability; the order notations `in probability',
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work under the assumption that there exists a (nondegenerate) distribution

K(x; P ), continuous in x, such that

Kn(x; P ) � Pf�nTn � xg ! K(x; P ) (1)

as n ! 1 for any real number x, where �n is a decreasing function of n. For

example, it may be the case that �n = n� where  is a positive constant.

Examples of such diverging statistics with well-de�ned (after normalization)

asymptotic distributions are given by the extreme order statistics, e.g. the

maximum or the kth largest value, from heavy-tailed observations; see Leadbet-

ter et al. (1983) where an excellent treatment of extreme order statistics from

stationary observations is given.

Our interest in such statistics is directly motivated by certain quantities

relevant for the measurement of exposure to risk in asset markets. To describe

these, let fPtg be a sequence of asset prices, such as the daily closing price for

the S&P 500 Index, and let Xt � ln(Pt=Pt�1) be the one-period return.

Example 1a. The return on the asset from time period 0 to time period n

can be measured by

ln(Pn=P0) =

nX
t=1

Xt:

A simple form of the eÆcient markets theory implies that Xt�� is a martingale

di�erence sequence with respect to publicly available information, where � is

some constant; note that this is compatible with the assumption that fXtg is a
stationary mixing process. In fact, many continuous-time stochastic models of

asset price evolution used in the �nance literature directly imply that fXtg is a
stationary, strong mixing process { examples are the simple geometric Brownian

motion a la Black-Scholes (1973) and the stochastic volatility models of Hull

and White (1987). Taking Tn = ln(Pn=P0) � n� then gives a simple example

of a statistic for which (1) holds: standard central limit results ensure that

�n = 1=
p
n. Note, however, that our interest is directed toward the distribution

of Tn, i.e.,Kn(x; P ), rather than the limiting distributionK(x; P ). Signi�cantly,

this simple case plays a central role in �nancial risk assessment, through the

notion of "value at risk" (VaR) (see for example Hendricks (1996) or Jorion

(1997)). One leading measure of VaR is de�ned as the quantity q such that

the probability of the asset value falling below q at the end of a speci�ed time

period (of duration n) is a given value p. In other words, the value at risk is

simply the quantile

q = K�1
n (p; P ):

The Basle Committee on Banking Supervision has recently proposed the use of

value at risk for assessing capital adequacy, while the Securities and Exchange

e.g. OP (:) and oP (:) will also be used in the sequel { see Brockwell and Davis (1987) for

de�nitions.
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Commission (SEC) has recently required that all corporate treasurers report es-

timates of value at risk for assets held in corporate portfolios. Standard methods

based on assumptions of normality may deliver rather poor estimates of the de-

sired quantiles, due to the well-known excess kurtosis typical of �nancial market

returns. The methods discussed here provide a convenient approach potentially

more accurate than current methods (see e.g. Hendricks (1996)).

Example 1b. Another measure of value at risk that is computable without

any knowledge of the centering factor n� is based on the quantiles of Un =

ln(Pn=P0). A simple rescaling generally will not ensure that equation (1) holds

with Un instead of Tn. We therefore have to take into account a centering

factor which in general may take the form of a sequence �n; in other words,

starting with a general statistic Un, we de�ne Tn = Un � �n, where �n is an

appropriately chosen sequence such that (1) holds as stated. This is actually a

most general set-up, and our statistic Un will diverge to in�nity if the sequence

�n is decreasing (the "inating variance case"), and=or if the product �n�n is

increasing (the "escaping mean case"). Our section 3 is devoted to this general

set-up.2

Example 2. Next, consider the worst cumulative return that an asset yields

at any point during a �xed time horizon of duration n,

Tn = min
1�t�n

Rt; Rt =

tX
�=1

X� :

This quantity determines whether \stop" orders are hit or bankruptcy occurs

during the horizon and also determines whether \knock-out" or \knock-in" pro-

visions of certain exotic but increasingly popular options are activated. The

distribution of Tn gives the probability of occurrence of such events. Further,

the quantiles of Tn provide another useful measure of risk exposure, which we

shall call \extreme value at risk", (XVaR) as these give the quantities q such

that a loss will exceed q at any time during the speci�ed period with speci�ed

probability. Analytic analysis of the distribution of Tn is not simple. Neverthe-

less, our methods provide a simple and direct way to consistently estimate the

distribution or quantiles for this choice of Tn.

Example 3. Our third example comes from the literature of \safety �rst"

portfolio selection (Roy, 1952; Arzac and Bawa, 1977; Jansen, et al., 1998).

2Note, however, that the e�ect of the centering �n will be negligible if �n�n ! 0, e.g.,

when the standard deviation of the general statistic Un increases faster than its mean EUn;

this is actually what happens in the case of the maximum of heavy-tailed observations of our

Example 3 { see also section 3.1 in what follows.
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In this theory, it is of interest to know the distribution of the worst possible

one-period return over a given time horizon,

Tn = max(�X1; : : : ;�Xn):

This quantity is also the focus of \worst case scenario" analysis, an alternative

to value at risk discussed by Boudoukh, Richardson and Whitelaw (1995).

A standard regularity condition on the tail of the distribution F of the Xts

is that, for some � > 0 measuring tail thickness and a �nite constant �, we have

x�(1� F (x)) ! � as x!1:

Under an assumption of strong mixing, it can be shown in this case that �n is

proportional to n�1=�; Leadbetter et al. (1983). Our methods will permit us

to estimate not only the distribution Kn and quantiles K�1
n

, but also the tail

parameters � and �.

Without limiting ourselves to a particular example, we work out in Section

2 consistent approximations to the decreasing sequence �n and to Kn(x; P ) and

K(x; P ) via subsampling in the case where the centering sequence �n is negligi-

ble, i.e. where �n = 0 or at least �n�n ! 0. We further show that the quantiles

of Kn(x; P ) and K(x; P ) can also be estimated consistently; as a result, predic-

tion intervals for Tn can be formulated. We also establish that, if the objective

is estimation of the sampling distribution of Tb (with b �xed), then a simple

subsampling estimator may be applied, and a reference to the large-sample dis-

tribution K(x; P ) may be unnecessary even if the form of K(x; P ) is explicitly

known. In section 3 , we consider the general case when the centering sequence

�n is unknown and nonnegligible, and we give convergent estimators of �n and

�n: Our results are illustrated by the case of the maximum when the domain

of attraction of the underlying distribution is totally unknown. In Section 4 we

focus attention on Tn being the maximum of heavy-tailed stationary observa-

tions. In that case, it is well-known that K(x; P ) has a speci�c form (the type

II extreme distribution { see Leadbetter et al. (1983)) which depends on P only

through F , and in particular only on the tail of F . We show how subsampling

can be successfully used to give a valid estimate of the `thickness' parameter �

of the tail of F ; consequently, the subsampling estimate of the distribution of

Tn and/or the limit distribution K(x; P ) (with estimated `thickness' parameter)

can be inverted for use in the problem of safety-�rst portfolio selection. In Sec-

tion 5 we illustrate applications of our subsampling methodology by obtaining

estimates of various quantities relevant for measuring exposure to �nancial risk,

including value at risk and safety �rst portfolio selection. All technical proofs

are placed in the Appendix.
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2 Subsampling for diverging statistics: the in-

ating variance case

2.1 Some de�nitions and a �rst result

De�ne Yi to be the subsequence (Xi; Xi+1; :::; Xi+bn�1), for i = 1; :::; q, and

q = n � bn + 1; note that Yi consists of bn consecutive observations from the

X1; : : : ; Xn sequence, and the order of the observations is preserved. Now let

Tbn;i be the value of the statistic Tb applied to the subsample Yi. The subsam-

pling distribution of �nTn; based on a subsample size bn, is de�ned by

Kbn(x j Xn; �:) � q�1
qX
i=1

1f�bnTbn;i � xg; (2)

where 1fAg is the indicator of set A; note that the subsample size bn is allowed

to depend on the actual sample size n.

The following theorem shows thatKbn(x j Xn; �:) is a consistent distribution

estimator; it complements the results of Politis and Romano (1994) by dealing

with the case of possibly diverging statistics, i.e., where �n may be decreasing.

Theorem 1 Let the X-sequence be stationary and strong mixing. Let �n be a

given known function of n:

(a) If bn = b (a constant), then, as n!1,

Kbn(x j Xn; �:) = Kb(x; P ) + oP (1);

for all x.

(b) Suppose the convergence (1) is true for �n a known function of n and

that bn !1 as n!1, but with bn=n! 0; then

sup
x

jKbn(x j Xn; �:)�K(x; P )j = oP (1); (3)

and

sup
x

jKbn(x j Xn; �:)�Kdn(x; P )j = oP (1); (4)

where dn is any sequence such that dn !1.

Part (a) of the Theorem indicates that, if our objective is to estimate

Kb(x; P ) for some �xed b, then this can be achieved in a consistent manner

using Kbn(x j Xn; �:) with bn = b. If our objective is to estimate Kdn(x; P ) for

some dn such that dn !1 (e.g. dn = n), then this can be accomplished using

Kbn(x j Xn; �:) with bn !1 (but always such that bn=n! 0).
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Remark 1.1 Note that assumption (1) of part (b) the Theorem concerns the

existence of a (continuous) limit distribution; the shape of this limit distribution

may well be unknown, and can be estimated by (3) above.

Remark 1.2 Looking at the proof of part (a) of the Theorem, note �rst

that for the asymptotic approximation to be useful in a �nite-sample situation,

b not only has to be �xed, but it has to be small as compared to n (so that b=n

is small). Also note that for part (a), existence of a limit distribution (as in (1))

is not required; thus, part (a) is true under very few assumptions. Furthermore,

it turns out that we do not even need to consider a divergence rate �n in order

to use a result similar to part (a); this is addressed by the following corollary

for which the following de�nitions are required. Let

�Kbn(x j Xn) � Kbn(x j Xn; 1);

and
�Kb(x; P ) � PfTb � xg:

Corollary 1 Let the X-sequence be stationary and strong mixing. If bn = b (a

constant), then, as n!1,

�Kb(x j Xn) = �Kb(x; P ) + oP (1);

for all x. In addition, if �Kb(x; P ) is continuous in x, we have

sup
x

j �Kb(x j Xn)� �Kb(x; P )j = oP (1):

Another immediate corollary (in the �xed b case) pertains to estimation of

the quantiles of �Kb(x; P ) relevant for setting prediction intervals for `future'

observations of Tb. Given a distribution G on the real line and a number t 2
(0; 1); we let G�1(t) denote the quantile transformation, i.e., G�1(t) = inf fx :

G(x) � tg, which reduces to the regular inverse of the function G if G happens

to be invertible.

Corollary 2 Let the X-sequence be stationary and strong mixing. If bn = b (a

constant), and if �Kb(x; P ) is continuous in x, then, as n!1,

�K�1
bn

(t j Xn) = �K�1
b

(t; P ) + oP (1); (5)

for any t 2 (0; 1).

2.2 Case of unknown divergence rate �n

In Theorem 1 we treated the case of known divergence rate �n. Nevertheless,

in many cases �n is unknown, its form depending on the (unknown) probability

measure P . It is often the case that the assumption �n = n� is reasonable, but

then typically the positive constant  is unknown as it may depend crucially on
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P . In the case of converging statistics (i.e., �n = n+), estimation of the rate

was treated in Bertail et al. (1999). We will now show how similar ideas are

applicable also in the case of diverging statistics (i.e., �n = n�).

The following Lemma relates the quantiles of �Kbn(x j Xn) to those of

K(x; P ) through the (unknown) rate �n; it will be the �rst step towards con-

structing an estimator of the rate as in Bertail et al. (1999).

Lemma 1 Let k0 = supfx : K(x; P ) = 0g and k1 = inffx : K(x; P ) = 1g,
and assume that K(x; P ) is continuous and strictly increasing on (k0; k1) as a

function of x. If (3) is true as n tends to in�nity, then

�bn
�K�1
bn

(t j Xn) = K�1(t; P ) + oP (1); (6)

for any t 2 (0; 1).

For example, if t = 1=2, then (6) simply says that b�n medianfTbn;i; i =
1; :::; qg P�! median of K(x; P ), where medianfTbn;i; i = 1; :::; qg is the sample
median of the collection fTbn;i; i = 1; :::; qg, and  is suitably chosen.

Therefore, if we look at the sample median of the fTbn;i; i = 1; :::; qg and/or
other sample quantiles (i.e. di�erent choices of t in (6)) for di�erent choices of

bn (with all choices satisfying bn ! 1 and bn=n ! 0), then we can estimate

the constant  by a simple regression as discussed next. Having estimated , an

estimate of the limit quantiles K�1(t; P ) are also immediately available through

(6).

To see this, note that by taking logarithms in (6) and assuming that �n = n�

we get

log
��� �K�1

bn
(t j Xn)

��� = log
���K�1(t; P )

���+  log bn + oP (1); (7)

so that  is simply the `slope' in regressing log
��� �K�1

bn
(t j Xn)

��� on log bn. So if

we consider di�erent subsample sizes bi;n, i = 1; :::; I > 1, we can use the least

squares estimator of slope, namely

I �
P

I

i=1(yi � y)(log(bi;n)� log)P
I

i=1(log(bi;n)� log)2
(8)

where yi = log
���� �K�1

bi;n
(t j Xn)

����, y = I�1
P

I

i=1 yi and log = I�1
P

I

i=1 log(bi;n):

Lemma 2 below establishes the consistency of I following similar results of

Bertail et al. (1999).

Lemma 2 Let the X-sequence be stationary and strong mixing. Suppose (1) is

true, and �n = n� where  is a positive unknown constant. Let K(x; P ) be

continuous and strictly increasing on (k0; k1) as a function of x, where k0 =

supfx : K(x; P ) = 0g and k1 = inffx : K(x; P ) = 1g. Let bi;n = n�i ; 1 > �1 >

� � � > �I > 0, and let t be a point in (0; 1). Then I =  + oP ((log n)
�1):
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As a remark, note that instead of looking at individual quantiles we could use

di�erences of quantiles, e.g. the inter-quartile range, etc., in order to estimate

; this is because (6) implies that, if t1 < t2,

�bn(
�K�1
bn

(t2 j Xn)� �K�1
bn

(t1 j Xn)) = K�1(t2; P )�K�1(t1; P ) + oP (1);

and thus

log
�
�K�1
bn

(t2 j Xn)� �K�1
bn

(t1 j Xn)
�
= log

�
K�1(t2; P )�K�1(t1; P )

�
+ log bn+oP (1)

as well. Bertail et al. (1999) originally developed this idea of looking at ranges,

and we will take it up again in section 3.

Lemma 3 below is an immediate corollary of Lemmas 1 and 2; its essence

is that the quantiles K�1(x; P ) (that represent the `constant' term in the re-

gression (7)) can be consistently estimated as well, using our estimator of  in

place of the true one, or {for that matter{ using any other (at least as accurate)

estimator of .

Lemma 3 Let ̂ be a statistic calculated from the data Xn such that ̂ =  +

oP ((logn)
�1). Under the assumptions of Lemma 1, and assuming that �n = n�

where  is a positive unknown constant, we have that

�̂bn
�K�1
bn

(t j Xn) = K�1(t; P ) + oP (1)

where �̂bn = b�̂
n

.

Lemma 2 can be generalized to take into account many di�erent quantiles

(i.e., t-points) at the same time. So let some points tj 2 (0; 1) be given, where

j = 1; :::; J � 1, together with subsample sizes bi;n, i = 1; ::; I > 1. Equation

(7) yields

yi;j � log
���� �K�1

bi;n
(tj j Xn)

���� = aj +  log(bi;n) + ui;j (9)

where aj � log
���K�1(tj ; P )

��� and ui;j = oP (1); i = 1; :::; I and j = 1; :::; J .

Following Bertail et al. (1999) we suggest the following ANOVA-type esti-

mator of  :

I;J �
PI

i=1(yi;: � y)(log(bi;n)� log)P
I

i=1(log(bi;n)� log)2
(10)

where yi;: = J�1
P

J

j=1 yi;j = J�1
P

J

j=1 log
���� �K�1

bi;n
(tj j Xn)

����,
y = (IJ)�1

P
I

i=1

P
J

j=1 yi;j and log = I�1
P

I

i=1 log(bi;n): Theorem 2 now o�ers

a generalization of Lemma 2.

Theorem 2 Let the X-sequence be stationary and strong mixing. Suppose (1)

is true, and �n = n� where  is a positive unknown constant. Let K(x; P )

8



be continuous and strictly increasing on (k0; k1) as a function of x, where k0 =

supfx : K(x; P ) = 0g and k1 = inffx : K(x; P ) = 1g. Let bi;n = n�i ; 1 >

�1 > � � � > �I > 0, and let points tj 2 (0; 1), j = 1; :::J � 1 be given. Then

I;J =  + oP ((log n)
�1):

What is perhaps more important than rate estimation per se, is that the

estimated divergence rate can be used in turn in order to achieve consistent

estimation of K(x; P ) and its quantiles. As a matter of fact, any estimator ̂

such that ̂ =  + oP ((logn)
�1) is accurate enough to be used in estimation of

K(x; P ).

Theorem 3 Let the X-sequence be stationary and strong mixing. Suppose (1)

is true, and �n = n� where  is a positive unknown constant. Let K(x; P )

be continuous and strictly increasing on (k0; k1) as a function of x, where k0 =

supfx : K(x; P ) = 0g and k1 = inffx : K(x; P ) = 1g. Let ̂ be a statistic

calculated from the data Xn and such that ̂ =  + oP ((logn)
�1); also letb�n = n�̂ . Let bn be such that bn !1 as n!1, but bn=n! 0. Then

sup
x

jKbn(x j Xn; b�:)�K(x; P )j = oP (1): (11)

Let t 2 (0; 1), and let cn(t) = K�1
bn

(t j Xn; b�:) be the tth quantile of the subsam-

pling distribution Kbn(x j Xn; b�:). Then
Pf�̂dnTdn � cn(t)g�!t; (12)

where dn is any sequence such that dn ! 1, i.e., cn(t) consistently estimates

the t-quantile of �̂dnTdn.

Remark 3.1. Theorem 3 is a generalization of part (b) of Theorem 1 in

the case where the divergence rate �n is unknown and must be estimated. Note

in particular that equation (12) may be used for the construction of prediction

intervals for future observations of Tdn :

3 Subsampling for diverging statistics: general

case

As mentioned in Example 1b of the Introduction, the divergence of a general

statistic Un may be due either to an inating variance and/or an escaping mean;

this very general case is addressed in the present section. We assume that Un is

a computable statistic such that, as n!1 for any real number x,

Kn(x; P ) � Pf�n(Un � �n) � xg�!K(x; P ); (13)

note that equation (13) is identical to (1) with the de�nition Tn = Un � �n.

9



Estimating simultaneously the divergence rate �n and the centering fac-

tor �n (or at least its dominant part) is the subject of Section 3.2 below;

we also achieve the construction of consistent subsampling distribution esti-

mators. Note that stated in full generality, the problem of estimating �n and �n
is not identi�able: indeed if �n�n converges to some constant C 6= 0, then

P (�nUn � x)�!K
0

(x; P ) = K(x � C;P ), i.e., we also have an acceptable lim-

iting distribution with the choice �
0

n
= 0. To make the problem identi�able, we

may {without loss of generality{ assume that �n�n is either a strictly monotone

function or identically zero (that is �n = 0); otherwise, we may assume that the

median of K(x; P ) is known up to some constant. In the same way the rate of

convergence can not be identi�ed up to a multiplicative constant. Note how-

ever that these constants have no importance in the construction of con�dence

intervals because of the invariance properties of subsampling distributions.

3.1 Centering and normalization of the maximum

Before proceeding with our theoretical results we now elaborate on our Example

1 of the Introduction for further motivation; the elaboration consists in allowing

for arbitrary distributions generating the data.

To �x ideas we now take Un = maxfX1; :::; Xng; with Xi being i.i.d. from

distribution F ; the assumption of independence is not crucial and can be re-

placed with an assumption of stationarity and weak dependence (mixing) {see

Leadbetter et al. (1983). Then there are only three possible shapes for the

limiting distribution K(x; P ) of the appropriately centered and standardized

extreme value statistic Un; the three cases are:

Type I : K(x; P ) = �(x) � exp(� exp(�x)):

T ype II : K(x; P ) = ��(x) �
�
0 if x � 0

exp(�x��) if x > 0

Type III : K(x; P ) = 	�(x) �
n
exp(�(�x)�) if x � 0

1 if x > 0

where � is some positive constant less than two. Which of the three cases

obtains depends on the generating distribution F . We say that F \falls in the

domain of attraction" of distribution G (denoted by F 2 D(G)) if the limiting

distribution K(x; P ) of the appropriately centered and standardized extreme

value statistic Un turns out to be G.

Characterizing the domain of attraction of F according to its tail as well as

the norming and centering constants �n and �n has received a lot of attention;

let us recall the main facts. Denote by R� the set of regularly varying functions
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at 1 with index �; that is, the set of measurable positive real functions L(�)
such that

lim
x!1

L(�x)=L(x) = ��;

and de�ne the \quantile" inverse of function H(�) by H�1(x) = inffy : H(y) >

xg: We have the following equivalence (see e.g. Bingham et al. (1987, chap.

8)):

� F 2 D(�) , H�1(x + y) �H(x) � yl(ex) when x ! 1; where l 2 R0

and we put H(x) � � log(1 � F (x)): In that case, one may choose �n =

H�1(log n) and �n = 1
H�1(logn+1)�H�1(logn)

: It is clear in this case that

both the centering factor �n and the rate �n contribute to the divergence

of Un, and they both depend on the underlying distribution F .

� F 2 D(��) , 1 � F (x) 2 R��; ; in this case one may choose �n =

0 and �n =
1

(1�F )�1( 1
n
)
: This is the heavy-tailed case of Example 1 of the

Introduction, which will be revisited in section 4.2 as well.

� F 2 D(	�), The upper endpoint (say x0) of F is �nite and 1� F (x0 �
1
x
) 2 R��; in this case one may choose �n = x0 and �n = 1

F
�1

1
( 1
n
)
; where

F1(�) = 1�F (x0��). Note that here Tn is actually a converging statistic

and that �n is not escaping. Thus the results of Bertail et al. (1999) may

be applied directly in this case. Recentering the subsampling distribution

at Tn would yield a convergent estimator of the true distribution of the

maximum. Nevertheless, we show below how this case may be treated

simultaneously with the others in a single unifying framework.

Typically, practitioners make some assumptions on the behavior of the tail

of F so that the domain of attraction is known and the problem mainly reduces

to the estimation of the index � in case (i) and (ii) and to the characterization of

the norming and centering constants in case (iii). A general theory that allows

the estimation of the distribution of the maximum and the estimation of the

norming and centering sequences without this kind of assumption is of interest

from a robustness point of view. Moreover, even in the case (iii), estimating

�n and �n simultaneously is a diÆcult problem. In the following we show how

the subsampling ideas presented in section 2 may be successfully applied in this

general case as well.

3.2 Estimation of the centering and norming sequences

It is clear that by putting Tn = Un � �n; results obtained in Theorems 1 and 2

and the associated lemmas also hold for Un. In particular we have the following

straightforward result relating the quantile of the subsampling distribution of

Un to the norming and centering factors; its proof is similar to the proof of

Lemma 1.

11



Lemma 4 Assume that the conditions of Lemma 1 hold for Tn = Un� �n and

let

KU;bn(xjXn) = q�1
qX
i=1

1fUbn;i � xg

denote the unnormalized subsampling distribution of Un; where Ubn;i is the value

of the statistic Ubn as computed from subsample Yi. Then we have

K
�1

U;bn
(tjXn) = �bn + ��1

bn
K�1(t; P ) + oP (�

�1
bn

): (14)

It follows from this lemma that for any point 0 < t2 < t1 < 1 we have

j �K�1
U;bn

(t2 j Xn)� �K�1
U;bn

(t1 j Xn)j=jK�1(t2; P )�K�1(t1; P )j = �bn(1 + oP (1)):

(15)

Suppose �rst that we are just interested in estimating the shape of �
n

without assuming that �
n
= n as in the previous section. Then, since we can

not hope to estimate �
n

but up to a multiplicative constant, we can simply

choose b�bn = j �K�1
U;bn

(t2 j Xn)� �K�1
U;bn

(t1 j Xn)j as our rate estimator. In other

words, any range of the subsampling distribution may be used to normalize the

subsampling distribution which is a remarkable fact.

Because �n is a centering factor, information on the median of the asymp-

totic distribution may be of some interest. For instance, in case (iii) of section

3.1, the limiting distribution is parameter free with a median equal to � log log 2:

Evaluating equation (14) at the median yields the equation

�bnK
�1

U;bn
(1=2j Xn) = �bn�bn � log log 2 + oP (1):

Since an obvious estimator of �
bn

is available, it is not diÆcult to see that a two-

step procedure (i.e. plugging the previous estimator b�bn in the above equation)

yields a convergent estimator of the function �n: Without loss of generality,

we might have imposed the assumption that the median of the limiting distri-

bution is zero. This would simply have shifted both the centering factor and

the limiting distribution. With this identifying condition, the median of the

subsampling distribution is actually the adequate recentering factor. The above

considerations suggest the following general result.

Theorem 4 Assume that there exist sequences �n and �n such that

Kn(x; P ) � Pf�n(Un � �n) � xg�!K(x; P );

where the asymptotic distribution K(x; P ) may be of unknown shape but is {

without loss of generality{ assumed to be normalized such that K�1(1=2; P ) =

0 and jK�1(t2; P ) � K�1(t1; P )j = 1 at some given points 0 < t1 < t2 < 1:

12



Let bn be a subsampling size satisfying the assumptions of Theorem 1(b), and

consider the median of the undersampling distribution

b�bn = K
�1

U;bn
(1=2j Xn):

Then we have b�bn = �bn + oP (�
�1
bn

) as n!1:

Moreover

b�bn = j �K�1
U;bn

(t2 j Xn)� �K�1
U;bn

(t1 j Xn)j = �bn(1 + oP (1));

and we have

q�1
qX
i=1

1fb�bn(Ubn;i � b�bn) � xg ! K(x; P ):

The proof of the theorem follows directly from (14) and (15) and is omitted.

Of course, other identi�ability conditions may be used to obtain the form of

the centering and norming constant. In some cases (for instance in case (iii) of

section 3.1), the asymptotic distribution is already \normalized" and entirely

known. In that case equation (14) gives straightforward estimators of the nor-

malizing and standardizing constants.

Theorem 5 Assume that �n ! 0 as n ! 1, that bn is a subsampling size

satisfying the assumptions of Theorem 1(b), and that the asymptotic distribu-

tion K(t; P ) = K(t) is known. For any points (t1;i; t2;i) i = 1; :::I such that

jK�1(t2;i; P )�K�1(t1;i; P )j 6= 0;de�ne

b�bn = I�1
IX

j=1

j �K�1
U;bn

(t2;i j Xn)� �K�1
U;bn

(t1;i j Xn)j=jK�1(t2;i; P )�K�1(t1;i; P )j:

Then b�bn = �bn(1 + oP (1)): De�ne

b�bn;I = I�1
IX
i=1

(K�1
U;bn

(tij Xn))� b��1
bn

K�1(tij Xn):

Then b�bn;I = �bn + oP (�
�1
bn

):

Moreover,

q�1
qX
i=1

1fb�bn(Ubn;i � b�bn) � xg ! K(x):

Theorems 4 and 5 are useful in standardizing the subsampling distribution to

obtain {for instance{ predictive con�dence intervals. Theorem 4 can be used to

obtain the shape of the normalizing sequence and of the asymptotic distribution

13



when everything is practically unknown. We emphasize however, that the rate

�n (and the centering product �n�n ) are only estimable up to a multiplicative

constant because of the identi�ability issues we discussed previously.

We now follow up on the \di�erence of quantiles" idea that originated in

Bertail et al. (1999). When the functional form of the rate �n is known up

to some �nite dimensional parameter, it is quite easy to see how the ideas of

Section 2 may be implemented to obtain a convergent estimator of the norming

sequences. Using a di�erence of quantiles for some �xed t1 > t2 we de�ne

y(t1;t2; bn) � log
�
j �K�1

U;bn
(t2 j Xn)� �K�1

U;bn
(t1 j Xn)j

�
(16)

= y(t1;t2;1)� log �bn(1 + oP (1))

with y(t1;t2;1) = log
�jK�1(t2; P )�K�1(t1; P )j

�
:

If we ensure that �n is of the form n� or h(n)� for some  6= 0 and some

(known) real function h then a straightforward regression gives the value of the

index  as before. This method is referred as the \range" method in Bertail

et al.(1999) and is illustrated by the following result.

Theorem 6 Assume that �n = n� for some  6= 0, , let (t1;j ; t2;j) j = 1; :::J

be some points in (0; 1)2;and bi;n = n�i ; 1 < i < I, be some subsampling sizes

satisfying the assumptions of Theorem 1(b) ; then the least-squares estimator of

 (say bI;J;n ) in the model

y(t1;j;t2;j ; bi;n) = y(t1;j;t2;j ;1) +  log bn;i + uj;i

is such that bI;J;n =  + oP ((logn)
�1)

The proof of this result is similar to the proof of Theorem 2 and is skipped.

3.3 General rates and slowly varying functions

In many interesting situations, �n is a regular varying function of index , say

�n = nL(n) where L is a slowly varying function that is such that, for any

� > 0; limx!1

L(�x)

L(x)
= 1 (see Bingham, Goldie and Teugels (1987)). Since the

behavior of L is only interesting for x tending to 1, the problem of estimating

L amounts in fact to �nding an "estimated" equivalent of L for large x , up to a

multiplicative constant term. The Karamata representation theorem states that

there exists a measurable bounded function "(:); with "(u) �! 0 as u!1 such

that L(n) = exp(
R
n

1
u�1"(u)du) = exp(h1(logn)), where h1 is a C1 function

with all derivatives vanishing at 1 (see Bingham et al. (1987), Th. 1.3.1 and
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Th 1.3.3) related to " by "(t) = h
(1)
1 (log t), where h

(1)
1 is the �rst derivative of

h1. Therefore (16) may be rewritten

y(t1;t2; bn) = y(t1; t2;1)�  log(bn) + logL(bn) + oP (1) (17)

= y(t1; t2;1)�  log(bn) + h1(log bn) + oP (1):

With L(bn) 6= 1, the preceeding method of regressing y(t1;t2; bn) on log bn
at some di�erent points (t1;j;t2;j) and di�erent bn;i still yields a convergent

estimator of  but at a rate slower than log(n)�1 (the convergence is due to the

fact that h1(log bn) = o(log bn). Try for instance h1(x) = logx (in that case

L(n) = logn) and bn;i = n�i as in Theorem 5; then bI;J;n =  + O( log logn
logn

).

Unfortunately this convergence rate is not suÆcient to ensure that nbI;J;n =

n(1+o(1)) and thus can not be used as a normalizing factor. In that sense, the

results in the preceding sections are not robust to the presence of a slowly varying

function. It is clear from this situation that  and h1 should be estimated

simultaneously. As noticed in Bertail et al. (1999), model (17) is known as a

partial spline regression model in the econometric literature (see Engle et al.

(1986)) and may be estimated using semi-parametric methods. As a particular

case, the same method could be applied in the three cases considered in section

3.1 regardless of the domain of attraction of the distribution. However it seems

to us that this is quite overoptimistic because this method would require the

computation of a very large number of subsampling distributions and in any

case would require huge sample sizes.

For this reason, we now present a more attractive construction under a

mild restriction on the slowly varying function. A quite simple and reasonable

hypothesis on L will indeed allow us to give more straightforward estimators of

 and L. The restriction amounts to assuming that

lim
x!1

L(x2)=L(x) = exp(�C0); (18)

where C0 is some constant: Recall that by the de�nition of a slowly varying

function we have that L(�x)=L(x) converges to 1 for any � > 0; that is, in (18)

we allow � to be of the same order as x. This hypothesis clearly holds for the

\usual" slowly varying functions of the form L(x) = �i(log
ci x)ai where ai are

some constants and logci denotes the ci-iterated logarithm.

Then for �n = bn such that b2n=n ! 0 we have

y(t1;t2; bn)� y(t1;t2; �nbn) =  log(bn) + C0 + oP (1) (19)

It follows from the same arguments as in Section 2 that, using di�erent sub-

sampling sizes, bn;j ; j = 1; :::; J � 2, and points (t1;i; t2;i) i = 1; :::I; the

least squares estimator of  in (19) gives a convergent estimator bbI;J of  up

to oP (log(n)
�1): Now we can plug this estimator in (17) to get (for two �xed

points t1;0 and t2;0)

15



y(t1;0;t2;0; bn) + bbI;J log(bn) = y(t1;0; t2;0;1) + h1(log bn) + oP (1):

Thus the form h1(log bn) can be estimated up to the constant term y(t1;0; t2;0;1).

Since this constant is of no importance in the construction of the subsampling

distribution, we can choose

bh1(log(bn)) = y(t1;0;t2;0; bn) + bbI;J log(bn)
as a convergent estimator of h1(log bn): This amounts to standardizing the

asymptotic distribution by imposing y(t1;0; t2;0;1) = 1.

In the following we put

bL(bn) = exp(bh1(log(bn))
and

s(t) =
p(t)R 1

0
p(u)du

with

p(t) = exp(� 1

x
� 1

1� x
):

We can use the extrapolation scheme of Adamovic (see for instance Bingham

et al. (1987), Th. 1.3.4) to construct an asymptotic equivalent of L(x) when x

!1. Let b�
n;0 = 0 < b�

n;1 < b�
n;2 < :::::: < b�

n;Kn
, be a sequence of subsampling

sizes. De�ne for any x > A > 0, x 2 [b�
n;i
; b�
n;i+1], the extrapolation

bL(x) = bL(b�n;i) + �bL(b�n;i+1)� bL(b�n;i)�
Z (x�b�

n;i
)=(b�

n;i+1�b
�

n;i
)

0

s(t)dt: (20)

Now it is apparent that bL is a C1 slowly varying function that coincides

with bL(b�
n;i
) = exp(bh1(log(b�n;i)) at each b�

n;i
: The following theorem states that

under some regularity assumptions on the subsampling sizes, the suggested con-

struction gives consistent estimators of  and L; note also that the theorem ad-

dresses the general case where  may be any real number (positive or negative).

Theorem 7 Assume that we have normalized the asymptotic distribution such

that jK�1(t2;0; P )�K�1(t1;0; P )j = 1 at some �xed points t1;0 and t2;0: Assume

that �n = nL(n) and that L(x) is a normalized slowly varying function satis-

fying (18); let (t1;i; t2;i) i = 1; :::I be some real numbers such that t1;i 6= t2;i for

all i = 1; :::I. Choose bn;j , j = 1; :::J � 2; such that b2
n;j

satisfy the hypotheses

of Theorem 1(b). Then the least-squares estimators of  and C0 in (19) satisfy

bb
I;J

=  + oP ((logn)
�1)

16



and bCo = C0 + o(1):

Moreover, for b�
n;0 = 0 < b�

n;1 = n1=2 < b�
n;2 < :::::: < b�

n;Kn
such that

b�
n;;j+1=b

�

n;j
< e; j = 1; ::::Mn; with Mn = o(logn) but Mn ! 1 then we

have that the estimator in (20) satis�es

L(x)bL(x) = OP (1);
bL(x)
L(x)

= OP (1); for x!1:

Finally, we have

bb�n � n
b

b
I;J bL(n1=2) exp( bCo) = n

b

b
I;J bL(bn;1) exp( bCo) = �n(1 + o(1)):

This theorem states that it is possible both to obtain simple estimates of the

index and the slowly varying function (provided that the behavior of L(x) is sim-

ilar to that of L(x2)). Of course, we need a lot of subsampling distributions (in

fact an in�nity) to estimate an asymptotic equivalent of L for large x. However

{and this makes our method more attractive than the non-parametric method

suggested before{ we need only one subsampling distribution at b�
n;1 = n1=2 to

obtain an asymptotic equivalent of L(n). This is clearly due to the fact that in

the smooth case considered here, L(n) is asymptotically equivalent to L(n1=2):

Because we have imposed jK�1(t2;0; P ) � K�1(t1;0; P )j = 1 at some points

t2;0 and t1;0; the convergence rate is identi�able: this explains why we need

to take into account bC0 in the de�nition of bb�n although constants do not play

a real role in our analysis. Of course, the choice of t2;0 and t1;0 is completely

arbitrary: we suggest using t2;0 = 1� t1;0 = 0:6915 so as to have some elements

of comparison with the reduced normal distribution.

Finally, note that estimation of the centering factor �n may be treated in

the same fashion under similar assumptions on its shape.

4 The extreme value statistic revisited

4.1 The Type I and Type III Cases

To illustrate the results of sections 3.2 and 3.3 we again consider the extreme

value statistic of section 3.1 Tn = max(X1; : : : ; Xn). If we know that F be-

longs to D(�) then (16) may be used to obtain a parametric or nonparamet-

ric estimator of �n. Since in that case the asymptotic distribution is entirely

known and equal to K = � there is no reason to standardize, and an estima-

tor of the rate of convergence is given under the hypotheses of Theorem 7 bybb�n ����1(t2;0)� ��1(t1;0)
��. Other estimators may be proposed in that case since

one may also take advantage of the special form of �n and �n as a function of

H�1: In the domain of attraction of type (iii) it is common that �n and �n
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are respectively of the form logn�a and lognb with b > a. Standard linear

regressions may then be used to obtain convergent estimators of a and b.

If one does not know anything about the tail of the distribution, then non-

parametric estimators or our Theorem 7 will �rst give convergent estimators

of the rate. Notice that we can get a lot of information directly from the es-

timated rate. If the estimated rate is increasing with n then this means that

F 2 D(	): In that case we may indi�erently use Tn as a recentering factor;

alternatively, we may simply use the median of the subsampling distribution. If

the estimated rate appears to be decreasing, then the median at several bn gives

the shape of the recentering factor. In any case, it is possible to construct an

approximation of the sampling distribution of the maximum without any infor-

mation on the tail of the distribution. Since type II is of particular importance

in �nancial applications we will review that case in the next section.

4.2 The Type II Case

Assume a regularity condition on the tail of F , namely that

x�(1� F (x))! � (21)

as x ! 1, for some 0 < � < 2 that measures the `thickness' of the tail of F ;

here � > 0 is a scaling constant. Under the strong mixing condition and (21)

it is well-known that, if Kn(x; P ) has a large-sample limit, then it must be of a

speci�c form (the type II extreme distribution of our Section 3.1); see Leadbetter

et al. (1983) where suÆcient conditions for the existence of a limit for Kn(x; P )

are also found by means of the notion of `distributional mixing'. Furthermore,

the divergence rate �n is also speci�ed in this case: �n is proportional to n�1=�.

To �x ideas, we now set �n = n�1=�; it now follows that under some mixing

conditions and (21) we have 3

Kn(x; P ) � Pfn�1=�Tn � xg ! K(x; P ) =

�
exp(�x��=�) if x > 0

0 if x � 0
(22)

as n!1.

Therefore, in this speci�c case, not only do we have existence of a limit

distribution K(x; P ), but we know the form of K(x; P ) as well (up to the two

unknown parameters � and �). Since � = 1= (where  is as in Theorem 6), an

3Note that there is no real discrepancy between eq. (22) and the type II extreme distri-

bution of our Section 3.1; the only di�erence is that now we are directly interested in the

scaling constant � as well, and thus we cannot allow the presence of an arbitrary `oating'

proportionality constant in the rate �n. In other words, whereas in eq. (22) (and throughout

Section 4) we explicitly take �n = n�1=�, the rate �n that �gures in the type II extreme

distribution of our Section 3.1 is proportional (but not equal) to n�1=�; as a matter of fact,

under eq. (21), the rate �n that �gures in the type II extreme distribution of Section 3.1

satis�es �n = (�n)�1=� instead.
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estimator of � could be obtained via our Lemma 2 or Theorem 2; these however

do not take our explicit knowledge of K(x; P ) into account.

Nevertheless, we can modify the subsampling methodology of Section 2 to

take knowledge of K(x; P ) into account. Note that since K(x; P ) is continuous,

(22) and Polya's theorem imply that

sup
x>0

jPfn�1=�Tn � xg �K(x; P )j ! 0;

which in turn implies that

sup
y>0

jPfTn � yg � exp(���1ny��)j ! 0:

As in Section 2, we may approximate PfTn � yg by �Kbn(y j Xn), which suggests

that

log
�� log

�� �Kbn(y j Xn)
��� = � log� + log bn � � log y + oP (1);

treating the above equation as a regression of log
�� log

�� �Kbn(y j Xn)
��� on log y

we can use di�erent values of y to get least squares estimates of both � and �.

Alternatively, we can look at quantiles again as in Section 2. Note that due

to (22) we have an explicit expression for K�1(t; P ) as well, namely

K�1(t; P ) = (�� log t)�1=�:

The above equation a�ords us the opportunity to use (6) to simultaneously

estimate � and � by least squares; alternatively, we could use an estimate �̂ of

� (say one obtained by Lemma 2 or Theorem 2 to obtain an estimate of �. To

elaborate on the latter, note that by Lemma 3 we have

b�1=�̂
n

�K�1
bn

(t j Xn) = (�� log t)�1=�̂ + oP (1)

which can be solved for �. To improve upon this estimate, we can look at

di�erent t-points and di�erent bns and take an average of the corresponding

�-solutions.

Another possibility for the case of interest here, i.e. where Tn = maxfX1; :::; Xng,
is to use the simple and popular Hill's estimator of � instead of our proposals;

see de Haan (1994), de Haan et al. (1994), and Jansen et al. (1998) for a

description of Hill's estimator. We note a growing disenchantment in recent lit-

erature regarding Hill's estimator; for example, Kearns and Pagan (1997) note

that Hill's estimator can be misleading if there is some dependence in the data,

whereas Resnick (1997) points out that Hill's estimator can exhibit some occa-

sional strange behavior, and that it certainly can not account for the possible

presence of a slowly varying function in the rate.

Recall that to implement Hill's estimator the number k of extreme order

statistics that are to be taken into account must be chosen by the practitioner.

In this case, k is like a `smoothing parameter', and its proper choice is crucial
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for good results; see e.g. Hall (1990) for a discussion. To implement our esti-

mators of � using Lemma 2 or Theorem 2, a `smoothing parameter' {namely

the subsample sizes used{ must also be chosen. Although the procedures were

shown to be valid for bi;n proportional to n�i , the exact optimal choice of the

�is (and of the proportionality constants) is an open problem at the moment.

5 Econometric applications

5.1 Data

For our empirical applications we study time series of daily asset returns. For

the Value at Risk example, we examine daily returns of the S&P 500 Index,

Xt = ln(Pt=Pt�1) where Pt is the daily closing S&P 500 index. Our observa-

tions start January 3, 1985 and end December 31, 1996, a total of n = 3033

daily observations. For our safety �rst portfolio allocation example, we consider

portfolios formed from the S&P 500 (an index of \large cap" stocks), the Russel

2000 (an index of \small cap" stocks) and the 30-day Treasury Bill (\TBill").

Our observations for the Russel 2000 and the TBill cover the same period as for

the S&P 500. Summary statistics for the daily returns of our three assets are

reported in table 1.

Daily Returns in Percent

Russel2000 S&P 500 TBill

Mean 0.05535 0.05926 0.02257

Std. 0.7718 0.9645 0.0062

Min -12.52000 -20.33500 0.01068

Max 7.72300 9.09940 0.03640

n 3033 3033 3033

Table 1: Descriptive statistics for the data.

5.2 Estimating Value-at-Risk

In computing our various VaR estimates we simulate the manner in which these

estimates would be deployed in a \live" application. Speci�cally, we start with

a sample of n1 = 2275 observations (1/3/1994) and compute the 1-Day, 10-Day,

or 23-Day VaR estimate. The next day we have a sample of n2 = 2276 obser-

vations and we repeat the exercise, continuing in this way until we accumulate

an \evaluation" sample of 3 years or 758 observations on estimated VaR. We

evaluate the performance of the various estimation methods by computing the

observed exceedance rate for the evaluation period. An unbiased method should
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have exceedance equal to the VaR level. For example, the 5% VaR estimates

should have a 5% exceedance for unbiasedness.

We assume � = 0 and use the subsampling methodology to estimate 1% and

5% VaR for 1, 10, and 23 trading days. The subsampling estimates of the n-day

VaR were arrived at by using Lemma 1 and the assumption that the divergence

rate � is proportional to the block length:

�n �K
�1
n

(p;X i) = K�1(p; P ) + op(1)

�� �K
�1
� (p;X i) = K�1(p; P ) + op(1):

Dividing the two equations yields:

�K�1
n (p;X i) =

��

�n
�K�1
� (p;X i) + op(1)

�K�1
n

(p;X i) =
��
n

�
�

�K�1
�

(p;X i) + op(1): (23)

The choice of the largest block length is based on the following procedure: At

every point t in time, split the available data into two subsets. For an initial

value of the largest block length estimate the parameter  based on data up to

period t � 200 and compute predicted and actual exceedances for the interval

(t � 200; t). Then adapt the largest block length if the actual and desired

exceedance do not match, reestimate and reevaluate until a choice for the largest

block length is found that minimizes the deviation from the actual exceedance

over the hold-out period of the past 200 days. Use this optimal block length to

determine the VaR for the next consecutive �ve days. Then again reoptimize

over the past 200 observations. The optimal block lengths for the �rst day of

our out-of-sample evaluation, January 3, 1994, are reported in table 2. Figures

1 and 2 report the optimal block lengths over the complete out-of-sample period

and �gures 3 and 4 show the corresponding hold-out sample exceedances. For

strictly stationary data it should not be necessary to reoptimize the block size,

however, we reoptimize the block size every �ve trading days in order to take

possible nonstationarities in the data into account. This reoptimization leads

to time-varying estimates of , the evolution of which is shown in �gures 5 and

6.

1 Day 10 Days 23 Days

1% VaR 114 128 239

5% VaR 114 136 227

Table 2: Optimal Block Lengths for the various VaR speci�cations based on

hold-out samples.
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Benchmark Subsampling

1% VaR 5% VaR 1% VaR 5% VaR

1 Day 0.3 3.1 1.8 6.5

(-QLL) (.025) (.082) (.024) (.081)

10 Days 0 0.1 1.8 7.6

(.054) (.151) (.051) (.182)

23 Days 0 0 3.9 8.6

(.125) (.257) (.102) (.349)

Table 3: Results for VaR estimation: Actual exceedance (in percent) of the esti-

mated VaR over a period of 758 trading days, 1/3/94 to 12/31/1996. Negative

Quasi Log Likelihood4 in parentheses (smaller values indicate a better goodness

of �t).

Results are reported in table 3. The benchmark is computed by simply

taking the 1st or 5th percentile of the distribution of historical returns which is

also a valid subsampling estimator. Figures 7 { 9 show the 1 day, 10 day and

23 day out-of-sample Value-at-Risk estimates, respectively.

5.3 Safety �rst portfolio selection

The safety �rst method of portfolio selection introduced by Roy (1952) pro-

vides an interesting alternative to the traditional mean-variance approach of

Markowitz (1952). Recently, Jansen et al. (1998) showed how extreme value

theory can be used in a multi-period setting to make operational the version of

safety �rst portfolio selection formulated by Arzac and Bawa (1977). Here we

show how our subsampling approach can be used in implementing multi-period

safety �rst portfolio selection.

We consider a portfolio of k risky assets, whose one period net random

returns are given by rj ; j = 1; : : : ; k. When a proportion wj of the initial

portfolio value is held in asset j, the one period random return on the portfolio

is

r(w) =

kX
j=1

wjrj ;

where w is the k�1 vector of weights, which by convention sum to unity (i0w = 1,

where i is the k�1 vector of 1s). Let the dth quantile of r(w) be given by qd(w),

so that

P [r(w) � qd(w)] = d:

4We compute QLL = �n�1
P

n

i=1

���yi �[V aRi
��� �
�
p1

[yi�[V aRi]
+ (1� p)1

[yi<[V aRi]

�
. This

measure weights the observed deviation from the VaR with the probability with which it is

supposed to occur.
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If the investor can borrow or lend risklessly at the �xed interest rate r over the

period, the safety �rst separation theorem of Arzac and Bawa (1977) speci�es

that the investor can obtain optimal portfolio weights w� by solving the problem

max
w

[E(r(w)) � r]=[r � qd(w)]:

Once optimal weights w� are given, the amount to be invested is determined as

W + b�, where W is the investor's initial wealth and b� is optimal borrowing

(lending if b� < 0), determined as

b�

W
= [s� qd(w

�)]=[qd(w
�)� r]:

The parameters s and d summarize the investor's preferences in that, as Arzac

and Bawa (1977) prove, the solution just described ensures that the investor

maximizes expected return subject to the constraint that wealth at the end of

the period (= (1+ r(w�))W + b�(r(w�)� r) falls below a critical level (1+ s)W

(typically s < 0) with probability d.

Jansen et al. (1998) note that investors typically invest for prolonged periods

of time, not just for a single period. Nevertheless, a single period of unusually

poor performance can be disastrous, especially for fund managers whose clientele

tend to be quite mobile. Consequently, Jansen et al. (1998) replace the single

period return quantile qd(w) in the safety �rst optimization above with the

quantile for the worst ever single period return ~qd(w). They show how extreme

value theory permits a useful approximation to these quantiles, making use of

Hill's (1975) estimator of the tail index �.

Alternatively, we can use our subsampling estimator (based on Theorem 2)

to approximate the desired quantiles. We apply this decision rule to determine

portfolios composed of the S&P 500, the Russel 2000, and leverage using TBills.

Before we discuss the results we briey discuss estimation - related issues.

5.3.1 Hill's estimator for the tail index

Let f�igni=1 be a sequence of random numbers obeying some probability law F

which satis�es the necessary regularity conditions. LetX(1) � X(2) � : : : � X(n)

denote the associated order statistics. Furthermore de�ne  to be 1=�.

Probably the currently most prominent estimator for the tail index was

proposed by Hill (1975) which was derived in a maximum likelihood framework.

The estimator is given by

̂ = k�1
kX
i=1

�
lnX(n+1�i) � lnX(n�k)

�
(24)

Asymptotic normality of the Hill estimator has been shown by e.g. Goldie and

Smith (1987) who proved that

k1=2 (̂ � )
d! N(0; 2) (25)
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if k increases suitably rapidly as n!1.

5.3.2 Nonparametric Subsampling

When we perform the nonparametric subsampling approach we assume a di-

vergence rate �n = n� and estimate  using a \nonparametric" estimator

obtained from the regressions of sections 2 and 3. The recentering factor �n is

assumed to be zero which is the case for distributions in the domain of Type II

extreme value distributions. For the problem at hand we can exploit Geluk and

De Haan's (1987) proposition 1.7 which states that the density with the fatter

tails always dominates in a mixture of two densities. Hence we estimated  for

portfolios with di�erent compositions and kept increasing the block length until

the estimates for  were roughly the same. Based on this method we arrive at

estimates for  of about .42 for the Russel 2000 and .45 for the S&P 500 based

on block lengths from 3 to 400.

We simulate the decision process for a critical loss s of �0:1%, �0:5%, and
�1%. Instead of the targeted 1% of times that we exceeded the critical loss

of s%, table 4 reports that s is never undercut by the subsampled portfolio

and 13% of the time by the Hill portfolio. We note, furthermore, that all Hill

- portfolios are far too highly leveraged which comes from the fact that the

estimated quantiles are too high (i.e. the estimated distribution has too little

mass in the tails). Figures 10 { 12 show how the value of the portfolios evolves

over the out-of-sample period. The Hill safety �rst portfolio performs more

like a \safety last" portfolio. In contrast, the subsampling safety �rst portfolio

exhibits the expected conservative behavior. As expected for such risk averse

values of s the subsampling safety �rst portfolio provides lower returns than

either of the stock indexes. However, as s goes from 0:1% to 1% the leverage

in the portfolio increases and it starts clearly distinguishing itself from a pure

TBill position.

6 Conclusions

In this paper we extend the results of Bertail et al. (1999) and show how sub-

sampling can be used to approximate the sampling distributions of diverging

statistics We provide consistent estimators both in the case of known and un-

known divergence rates and illustrate how to estimate measures of tail fatness

for dependent data.

Our method performs well in estimating value at risk and our application

to safety �rst portfolio selection indicates that for time series our subsampling

estimator constitutes a clear improvement over the conventional Hill estimator

which has been devised for iid data.
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s=.1% s=.5% s=1%

T-Bill SubS Hill SubS Hill SubS Hill

Wealth after 3 years: 1.160 1.166 1.239 1.182 1.518 1.202 1.918

average annualized returns: 5.067 5.250 7.395 5.728 14.918 6.325 24.211

% of times below 0.1% 0.000 0.000 13.852 { { { {

% of times below 0.5% 0.000 { { 0.000 13.852 { {

% of times below 1.0% 0.000 { { { { 0.000 13.852

Returns (in %):

Mean: 0.020 0.020 0.028 0.022 0.057 0.024 0.092

Standard Deviation: 0.003 0.009 0.131 0.038 0.569 0.074 1.118

Minimum: 0.012 -0.023 -0.571 -0.167 -2.530 -0.348 -4.979

Maximum: 0.023 0.052 0.593 0.178 2.623 0.337 5.161

Leverage (b�):

Mean: { -0.985 -0.778 -0.935 -0.036 -0.872 0.891

Standard Deviation: { 0.001 0.011 0.002 0.052 0.004 0.104

Minimum: { -0.987 -0.802 -0.946 -0.145 -0.894 0.676

Maximum: { -0.983 -0.749 -0.928 0.113 -0.859 1.199

Portfolio weight for RU2000:

Mean: { 0.622 0.467 0.622 0.467 0.622 0.467

Standard Deviation: { 0.026 0.319 0.026 0.319 0.026 0.319

Minimum: { 0.550 0.000 0.550 0.000 0.550 0.000

Maximum: { 0.750 1.000 0.750 1.000 0.750 1.000

Table 4: Results for the Safety First Portfolio Selection (d=1%).
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Appendix: Technical proofs

Proof of Theorem 1 Fix an x and �rst note that EKbn(x j Xn; �:) =

Kbn(x; P ) because of stationarity of the X-sequence. Now by an argument

similar to the proof of Theorem 3.1 in Politis and Romano (1994) we have that

V ar (Kbn(x j Xn; �:)) = O(bn=n) +O(n�1
nX
i=1

�X (i));

note that both terms on the right-hand side above tend to zero under the as-

sumed conditions { the second term being the Cesaro sum of a null sequence,

and the �rst term due to bn=n! 0.

Therefore, Kbn(x j Xn; �:) = Kbn(x; P )+oP (1). Letting bn = b (a constant),

part (a) is proved. Now letting bn ! 1, note that Kbn(x; P ) ! K(x; P ) by

assumption (1). Since K(x; P ) is assumed continuous, Polya's theorem yields

the uniform consistency in (3).

Finally, if dn ! 1, then note that sup
x
jKdn(x; P ) �K(x; P )j ! 0 as well

by (1). Thus (4) is a direct consequence of (3). 2

Proof of Lemma 1 First note that using arguments similar to those in the

proof of Lemma 1 in Bertail et al. (1999) it can be shown here too that

K�1
bn

(t j Xn; �:) = K�1(t; P ) + oP (1) (26)

for any t 2 (0; 1). Also note that by de�nition of the quantile transform we have

�Kbn(x �
�1
bn

j Xn) = Kbn(x j Xn; �:) (27)

and thus, for any t 2 (0; 1),

K�1
bn

(t j Xn; �:) = �bn
�K�1
bn

(t j Xn) (28)

as well. As a consequence of (26) and (28) we immediately have that (6) is true.

2

Proof of Lemma 2 The proof follows from the more general Theorem 2

below by letting J = 1. 2

Proof of Lemma 3 Note that since ̂ =  + oP ((logn)
�1) it follows that

b�̂
n
=b�

n
! 1 in probability, and b�̂

n
= b�

n
(1 + oP (1)): So the LHS of (6)
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equals b�
n

�K�1
bn

(t j Xn) = b�̂
n

(1 + oP (1)) �K
�1
bn

(t j Xn) = b�̂
n

�K�1
bn

(t j Xn) +

oP (b
�̂
n

�K�1
bn

(t j Xn)) = b�̂
n

�K�1
bn

(t j Xn) + oP (1), since b

n
�K�1
bn

(t j Xn) = OP (1)

by (6). 2

Proof of Theorem 2 Note that since bi;n = n�i ; 1 > �1 > � � � > �I > 0,

it follows that bi;n ! 1 and bi;n=n ! 0 for all i. Therefore (3) is true, and

Lemma 1 validates the ANOVA equation (9), and in particular the fact that

ui;j = oP (1). Thus (10) yields

I;J =  +

PI

i=1(ui;: � u)(log(bi;n)� log)P
I

i=1(log(bi;n)� log)2
;

where u = (IJ)�1
PI

i=1

PJ

j=1 ui;j , and ui;: = J�1
PJ

j=1 ui;j . As in Bertail et

al. (1999), note that log = A logn, and
PI

i=1(log(bi;n)� log)2 = B(logn)2; for

some constants A;B; thus, for �xed I and J , we have I;J =  + oP ((log n)
�1).

2

Proof of Theorem 3 Fix an x and note that

Kbn(x j Xn; b�:) � q�1
qX
i=1

1fb�̂n Tbn;i � xg:

As before, since ̂ = +oP ((logn)
�1) it follows that b�̂

n
=b�

n
! 1 in probability,

and b�̂n = b�n (1 + oP (1)): Therefore, b
�̂
n Tbn;i = b�n Tbn;i + oP (b

�
n Tbn;i) =

b�
n
Tbn;i + oP (1), since b

�
n
Tbn;i = OP (1) by (1).

So from (3) of Theorem 1 equation (11) follows. Equation (12) follows by

similar arguments as in the proof of Theorem 5 in Bertail et al. (1999). 2

Proof of Theorem 5 Equation (15) directly yields that b�bn = �bn(1 +

oP (1)): >From (14) we get that at any ti

K
�1

U;bn
(tij Xn) = �bn+b��1bn

K�1(ti; P )(1 + oP (1)) + oP (�
�1
bn

): (29)

It follows that

b�bn;I = I�1
IX
i=1

(K�1
U;bn

(tij Xn))�b��1
bn

K�1(tij Xn) = �bn+I
�1

IX
i=1

K�1(ti; P )oP (�
�1
bn

)
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Since K (ti; P ) is continuous at each ti and I �xed , I�1
P

I

i=1K
�1(ti; P ) is

bounded and the result follows. 2

Proof of Theorem 7 The proof for bbI;J =  + oP (logn
�1) and bC0 =

C0 + o(1) is similar to the proof of theorem 2. It essentially remains to prove

the statement on bL: By construction of the b�
n;i
;we have n1=2 � b�

n;j
< ejn1=2 ;

j = 1; ::::Mn: Since Mn = o(logn); b�
n;Mn

=n ! 0 and all the b�
n;j

satisfy the

hypothesis of Theorem 1b and are thus admissible for the construction of the

subsampling distributions. Since bbI;J =  + oP (logn
�1) holds and since we

have �xed y(t1;0; t2;0;1) = 0; we have directly from (17)

bh1(log(b�n)) = h1(log b
�

n) + oP (1):

It follows that for any x 2 [b�
n;i
; b�
n;i+1];

bL(x) = fL(b�n;i)(1 + op(1)) + (L(b�n;i+1)(1 + op(1))

�L(b�n;i)(1 + op(1)))

Z (x�b�
n;i

)=(b�
n;i+1�b

�

n;i
)

0

s(t)dt+ oP (1)g:

But according to Bingham et al. (1987, p.15 {see the proof of their theorems

1.3.3 and 1.3.4), uniformly in x 2 [b�
n;i
; b�
n;i+1];

L1(x) = L(b�n;i) + (L(b�n;i+1)� L(b�n;i))

Z (x�b�
n;i

)=(b�
n;i+1�b

�

n;i
)

0

s(t)dt

is asymptotically equivalent to L(x): Since s(t) is uniformly bounded on each

interval, it follows that

bL(x) = (L(x) + oP (1) + rn)

with

rn = (L(b�n;i)op(1)� L(b�n;i+1)op(1)):

But by the uniform convergence theorem (see theorem 1.2.1 of Bingham et

al. (1987)), L(b�
n;i
)=L(x) ! 1; L(b�

n;i+1)=L(x) ! 1 and L(b�
n;i+1)=L(b

�

n;i
) ! 1

uniformly in x 2 [b�
n;i
; b�
n;i+1]: We deduce from this that rn = L(x)op(1) and

thus that bL(x) = L(x)(1 + oP (1));

yielding the result of the theorem.

The last result of the theorem follows from the fact that

bL(n1=2) = L(n1=2)(1 + o(1)) = L(n) exp(C0)(1 + o(1)) = L(n) exp(C0)(1 + o(1):

This combined with bbI;J =  + oP (logn
�1) and bC0 = C0 + o(1) yields the

convergence of the estimated rate. 2
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Figure 1: Optimal Block Lengths for 1% Value-at-Risk
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Figure 2: Optimal Block Lengths for 5% Value-at-Risk
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Figure 3: In Sample Exceedances for 1% Value-at-Risk

2200 2300 2400 2500 2600 2700 2800 2900 3000 3100
0.04

0.045

0.05

0.055

0.06

0.065
In Sample Exceedance of Optimal Block Length 5%

23 Days
5 Days 
1 Day  

Figure 4: In Sample Exceedances for 5% Value-at-Risk
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Figure 5: Estimated Divergence Rates for 1% Value-at-Risk
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Figure 6: Estimated Divergence Rates for 5% Value-at-Risk
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Figure 7: Estimates for 1 Day Value-at-Risk
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Figure 8: Estimates for 10 Day Value-at-Risk
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Figure 9: Estimates for 23 Day Value-at-Risk
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Figure 10: Portfolio returns for s = 0:1%.
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Figure 11: Portfolio returns for s = 0:5%.
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Figure 12: Portfolio returns for s = 1%.
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