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Abstract

In this paper, we investigate the existence and uniqueness of the solution for a
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1 Introduction

Let Θ be a bounded open subset of Rn, T > 0, ρ > 0. The following nonlinear PDE

defined on [0;T ]×Θ
∂2u

∂t2
(t, x)−∆u(t, x) + |u(t, x)|ρ · u(t, x) = φ(t, x),

u(0, x) = u0(x),
∂u

∂t
(0, x) = v0(x),

(1.1)

which appears in relativistic quantum mechanics, has been extensively studied (see J.L.

Lions [7] and the references therein for a detailed account on the subject). If u0 ∈

H1
0 (Θ)

⋂
Lρ+2(Θ), v0 ∈ L2(Θ) and φ ∈ L2(]0, T [×Θ), it is known that the Cauchy problem

(1.1) admits a unique solution u ∈ L∞ ([0, T ];H1
0 (Θ)

⋂
Lρ+2(Θ))

⋂
C([0, T ];L2(Θ)).

∗MODAL’X and Laboratoire de Probabilités et Modèles Aléatoires (UMR 7599).
†MODAL’X.
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When the forcing term φ(t, x) is random and ρ = 0, (1.1) reduces to a linear or

semilinear SPDE and has been studied by several authors. More precisely, consider the

following stochastic real-valued wave equation
∂2u

∂t2
(t, x)−∆u(t, x) = σ(u(t, x))Ḟ (t, x) + b(u(t, x)),

u(0, x) = u0(x),
∂u

∂t
(0, x) = v0(x),

(1.2)

where σ, b : R 7−→ R are globally Lipschitz functions. When n = 1, R. Carmona and

D. Nualart have shown in [2] that (1.2) has a unique solution when F is the space-time

white noise.

For n = 2, the fundamental solution S(t, x) to the wave equation
∂2S

∂t2
(t, x)−∆S(t, x) =

δ(0,0) is still a function (while in dimension n ≥ 3 it is only a distribution) but lacks L2

integrability properties, which forbids to consider equation (1.2) when F is the space-

time white noise. On the other hand, physical models of wave propagation in a random

environment have led to Gaussian perturbations which are white in time but correlated

in space (see e.g. S.K. Biswas and N.U. Ahmed [1], R.N. Miller [8]). Thus C. Mueller

[11], R. Dalang and N. Frangos [4], A. Millet and M. Sanz-Solé [10] have studied existence

and uniqueness of the solution of (1.2) when F is a generalized Gaussian noise (F (ϕ), ϕ ∈

D(R+ × R2)) with covariance

E[F (ϕ)Fψ)] =

∫ T

0

∫
R2

∫
R2

ϕ(t, x) · ψ(t, y) · f(|x− y|) dxdydt, (1.3)

where f is the Fourier transform of some positive measure µ on R2. In [10], it is shown

that the following integrability condition

∫
0+

rf(r) ln

(
1 +

1

r

)
dr <∞ (1.4)

is necessary and sufficient to obtain existence of a unique L2- bounded solution u(t, x) for
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(1.2). (A similar result was proved in [11] when f is bounded and, in [4], in the linear

case or for ”small time” in the semilinear case.)

We remark that in dimension 1 and 2 equation (1.2) is to be considered in a weak form,

with stochastic integrals with respect to the martingale measure Mt(A) = F ([0, t] × A),

t ∈ [0, T ], A ∈ B(R2), associated with the noise F . Equivalently, one can consider the

following evolution formulation:

u(t, x) =

∫
R2

S(t, x− y)v0(y)dy +
∂

∂t

(∫
R2

S(t, x− y)u0(y)dy

)
(1.5)

+

∫ t

0

∫
R2

S(t− s, x− y) [σ(u(s, y))F (ds, dy) + b(u(s, y)dyds] .

S. Peszat and J. Zabczyk [13], R. Dalang [3] and S. Peszat [12] have recently studied the

existence and uniqueness of the solution to (1.2) in dimension n ≥ 3 by using Fourier

transform methods and a characterization of the space covariance structure of the noise

F . In [13], the authors show the existence of a unique solution u in C([0, T ];L2(µ)) where

µ is a positive finite measure on Rn. In [3], a theory of distribution-valued martingale

measures is developed, which enables the author to solve the Cauchy problem (1.2) in

non-Hilbert spaces.

In the present paper, we study the following nonlinear stochastic wave equation, de-

duced from (1.1) by replacing φ(t, x) by a random forcing term and from (1.2) by replacing

b(r) by the non-globally Lipschitz function −|r|ρr for ρ > 0:
∂2u

∂t2
(t, x)−∆u(t, x) + |u(t, x)|ρ u(t, x) = σ(u(t, x))Ḟ (t, x),

u(0, x) = u0(x),
∂u

∂t
(0, x) = v0(x).

(1.6)

For this problem, when σ is bounded and u0 and v0 have compact support, we prove an

existence and uniqueness result in the case of a general Gaussian noise F with covariance

defined by (1.3) and satisfying certain integrability properties. We also obtain a sharper
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result in the particular case where the function f appearing in (1.3) is x−α with α ∈]0; 2[

(or is dominated by this function). The proofs are based on a combination of classical

functional analysis and probability theory, as it can be found, for instance, in a recent

paper by I. Gyöngy (see [5]) for the study of a stochastic Burgers-type equation. The

solution of (1.6) is obtained by an approximation procedure via regularized versions of

equation (1.6) and suitable a priori estimates. To this end, new regularity properties for

the Green function S are proved.

The paper is organized as follows: the framework and the results are presented in the

next section; in section 3, we prove the uniqueness of a solution to (1.6), while the existence

is established in section 4. Finally, some technical estimates of integrals involving S are

proved in the Appendix.

2 General framework and statements of the results.

Let F (t, x) be a Gaussian centered noise on R+ × R2 with covariance given by (1.3). We

assume that the function f :]0,+∞[−→ R+ is continuous and satisfies (1.4).

Let E denote the inner product space of measurable functions ϕ : R2 7−→ R such that

∫
R2

dx

∫
R2

dy |ϕ(x)| f(|x− y|) |ϕ(y) <∞

endowed with the inner product

〈ϕ, ψ〉E =

∫
R2

dx

∫
R2

dy ϕ(x)| f(|x− y|)ψ(y),

and let H denote the completion of E .

We shall say that condition (Hβ) holds if there exists a constant C such that:

(Hβ)

∫
0+

r1−βf(r)dr <∞ ;
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it clearly implies that (1.4) is satisfied. Consider the nonlinear stochastic wave equation

defined in (1.6). Following the method of Walsh [15], a natural way to give it a rigorous

meaning is in terms of the following weak formulation: given any function ϕ ∈ D([0, T ]×

R
2),

∫ T

0

∫
R2

(
∂ϕ

∂t2
−∆ϕ

)
(t, x)u(t, x)dtdx+

∫ T

0

∫
R2

|u(t, x)|ρu(t, x)ϕ(t, x)dtdx (2.1)

=

∫
R2

(
ϕ(0, x)v0(x)− ∂ϕ

∂t
(0, x)u0(x)

)
dx+

∫ T

0

∫
R2

ϕ(t, x)σ(u(t, x))F (dt, dx) .

As is classical, (2.1) can be stated equivalently in terms of the associated evolution equa-

tion:

u(t, x) = u(0)(t, x)−
∫ t

0

∫
R2

S(t− s, x− y)|u(s, y)|ρu(s, y)dyds

+

∫ t

0

∫
R2

S(t− s, x− y)σ(u(s, y))F (ds, dy), (2.2)

where

u(0)(t, x) =

∫
R2

S(t, x− y)v0(y)dy +
∂

∂t

(∫
R2

S(t, x− y)u0(y)dy

)
(2.3)

and S is the fundamental solution of the deterministic wave equation associated to (1.6),

that is:

S(t, x) =
1

2π
(t2 − |x|2)−

1
2 1{|x|<t} . (2.4)

We assume the following hypotheses:

(C1) u0, v0 : R2 7−→ R have compact support K.
(C2) u0 is of class C1, v0 ∈ Lq0(R2) for some q0 ∈]2,+∞[.
(C3) σ : R 7−→ R is globally Lipschitz and bounded such that σ(0) = 0.

For any t ∈ [0, T ], set

D(t) =
{
x ∈ R2 : ∃y ∈ K, |x− y| < t

}
.
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Because of the definition of S, it is easy to see that if u0 and v0 satisfy (C1) and (C2),

then

u(0)(t, x) = 0 for x 6∈ D(t). (2.5)

Besides, consider for the time being the ”Lipschitz” version of equation (1.6) (or (2.2)),

that is:

u(t, x) = u(0)(t, x) +

∫ t

0

∫
R2

S(t− s, x− y)b(u(s, y))dyds

+

∫ t

0

∫
R2

S(t− s, x− y)σ(u(s, y))F (ds, dy), (2.6)

where b is globally Lipschitz and b(0) = 0. It is well-known that the unique solution of

(2.6) can be obtained by means of the following Picard approximation procedure:
u0(t, x) = u(0)(t, x)

uk+1(t, x) = u(0)(t, x) +
∫ t

0

∫
R2 S(t− s, x− y)b(uk(s, y))dyds

+
∫ t

0

∫
R2 S(t− s, x− y)σ(uk(s, y))F (ds, dy)

(2.7)

Then, by induction, one easily sees that if u0 and v0 satisfy (C1) and (C2), then, for all k

uk(t, x) = 0 if x 6∈ D(t) . (2.8)

Indeed, assume (2.8) for some k and for all t ∈ [0, T ], then for a fixed time t ∈ [0, T ] and

x 6∈ D(t), one has: for every s ∈ [0, t] and every y such that |x− y| ≤ t− s,

∀z ∈ K, |z − y| ≥ |z − x| − |y − x| ≥ s .

The induction assumption implies that uk(s, y) = 0 for all s ∈ [0, t] and y 6∈ D(s); since

b(0) = σ(0) = 0, we deduce uk+1(t, x) = 0 for x 6∈ D(t), which yields (2.8) for k + 1.

Of course, (2.8) yields the same support property for the solution u itself. This prop-

erty of ”propagation of the support”, which will also be proved for the solution to (1.6), is

very important because, by only assuming (C1) and (C2), all the integrals on R2 involved
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in (2.2) can be considered as integrals on the bounded region Θ := D(T ) of R2, and thus

one can work in spaces based on Θ. More precisely, we prove the following result:

Theorem 2.1 Let ρ ∈]0, 2], u0, v0 satisfy (C1) and (C2), and σ satisfy (C3). Then:

(a) If the function f in (1.3) satisfies (Hβ) for some β ∈]0, 2[, then equation

(1.6) has a unique solution u ∈ C([0, T ];Lp(Θ)) for 8 < p < 2(ρ+2)
ρ

.

(b) If f(x) = x−α with α ∈]0, 2[, then equation (1.6) has a unique solution

u ∈ C([0;T ];Lp(Θ)) for 2 ∨ (ρ+ 1) ∨
(

8
5−2α

)
< p < 2(ρ+2)

ρ
.

The next sections are devoted to the proof of this theorem. In the sequel, ‖ · ‖p will

denote the usual norm in Lp(Θ).

3 Uniqueness and local existence of the solution.

The main result of this section is the following:

Proposition 3.1 Suppose that the assumptions of Theorem 2.1 hold and that either con-

dition (a) or (b) is satisfied:

(a) f satisfies (Hβ) for some β ∈]0, 2[ and p ∈]8,+∞[.

(b) f(r) = r−α for some α ∈]0, 2[ and p ∈]2 ∨
(

8
5−2α

)
,+∞[.

Then the Cauchy problem (1.6) has at most one solution in C([0, T ];Lp(Θ)) such that for

all t ∈ [0, T ] the support of u(t, ·) is contained in D(t).

Notice that the property of ”propagation of support” is postulated because at this stage,

we have no way to obtain it a priori. We will prove later on that the solution we construct

possesses this property; this yields a more satisfactory uniqueness result.

Proof: The method used is adapted from that of Proposition 4.7 in [5]. Given R > 0, let

χR : R 7−→ R be a C1 function such that χR(x) = 1 for |x| ≤ R, χR(x) = 0 for |x| ≥ R+1,
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and ‖χ′R‖∞ ≤ 2. We consider the following ”truncated” problem:
∂2u

∂t2
(t, x)−∆u(t, x) + |u(t, x)|ρ u(t, x)χR(‖u(t, ·)‖p) = σ(u(t, x))Ḟ (t, x),

u(0, x) = u0(x),
∂u

∂t
(0, x) = v0(x) .

(3.1)

Set b(r) = −|r|ρ r. Let u and v be solutions to (3.1) such that, for all t ∈ [0, T ], the

functions u(t, ·) and v(t, ·) vanish outside D(t). Writing the evolution formula for (3.1)

and using the support property for u and v, one obtains

u(t, x)− v(t, x) = A(t, x) +B(t, x),

where

A(t, x) =

∫ t

0

∫
D(s)

S(t− s, x− y) [χR(‖u(s, ·)‖p)b(u(s, y))

−χR(‖v(s, ·)‖p)b(v(s, y)) ] dyds ,

B(t, x) =

∫ t

0

∫
D(s)

S(t− s, x− y) [σ(u(s, y))− σ(v(s, y)]F (dy, ds).

Burkholder’s and Hölder’s inequalities yield

E

(
‖B(t, ·)‖pLp(D(t))

)
≤ Cp

∫
D(t)

E

(∣∣∣∣∫ t

0

‖S(t− s, x− ·) [σ(u(s, ·))− σ(v(s, ·)]‖2
Hds

∣∣∣∣
p
2

dx

)
.

Because of the hypotheses on p and the Lipschitz property of σ, Lemma A.4 implies the

existence of γ > −1 such that

E

(
‖B(t, ·)‖pLp(D(t))

)
≤ Cp

∫ t

0

(t− s)γ‖u(s, ·)− v(s, ·)‖pLp(D(s))ds. (3.2)
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On the other hand, suppose for instance that ‖u(s, ·)‖p ≤ ‖v(s, ·)‖p. Then, setting q = p
ρ+1

and using the definition of χR, we have

‖χR(‖u(s, ·)‖p)b(u(s, ·)− χR(‖v(s, ·)‖p)b(v(s, ·))‖q

≤ |χR(‖u(s, ·)‖p)− χR(‖v(s, ·)‖p)| ‖b(u(s, ·))‖q

+χR(‖v(s, ·)‖p)‖b(u(s, ·))− b(v(s, ·))‖q

≤ 2‖u(s, ·)− v(s, ·)‖p ‖u(s, ·)‖ρ+1
p 1{‖v(s,·)‖p≤R+1}

+Cρ χR(‖v(s, ·)‖p) ‖|u(s, ·)− v(s, ·)| sup(|u(s, ·)|ρ, |v(s, ·)|ρ)‖q

≤ C(R)‖u(s, ·)− v(s, ·)‖p

+Cρ χR(‖v(s, ·)‖p)‖u(s, ·)− v(s, ·)‖p
(
‖u(s, ·)‖ρp + ‖v(s, ·)‖ρp

)
≤ C(R) ‖u(s, ·)− v(s, ·)‖p,

by means of Hölder’s inequality used in the following way:

If h1 ∈ Lp, h2 ∈ L
p
ρ , then ‖h1 h2‖Lq ≤ ‖h1‖Lp ‖h2‖

L
p
ρ
.

Hence, since p > 2 > ρ, the inequality (A.9) in Lemma A.2 applied with κ = 1 + 1
p
− 1

q
=

1− ρ
p
> 0 and Hölder’s inequality imply that for t ∈ [0, T ]

‖A(t, ·)‖pp ≤ C(R)

∫ t

0

(t− s)2κ−1‖u(s, ·)− v(s, ·)‖pp ds. (3.3)

Thus (3.2) and (3.3) together with Gronwall’s lemma yield

sup
0≤t≤T

E

(
‖u(t, ·)− v(t, ·)‖pp

)
= 0 , (3.4)

which means that uniqueness holds for the truncated problem (3.1). Now, let u1, u2 ∈

C([0, T ];Lp(Θ)) be solutions to (1.6) such that for all t ∈ [0, T ] the support of u1(t, ·) and

u2(t, ·) is included in D(t). For every R > 0 and i = 1, 2, define

τ iR = inf{t ≥ 0 : ‖ui(t, ·)‖p ≥ R} ∧ T.
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Then limR−→+∞ P(τ 1
R ∧ τ 2

R < T ) = 0 while (3.4) shows that u1(t, x) = u2(t, x) a.s. for

every t ∈ [0, τ 1
R ∧ τ 2

R] and almost every x ∈ Θ; this concludes the proof. 2

Using arguments similar to those of the proof of Proposition 3.1, one can also show a

local existence theorem for the solution to (1.6). Indeed, let R denote the Banach space

of Lp(Θ)-valued random processes v(t), t ∈ [0, T ], endowed with the norm

‖v‖R := sup
t≤T
{E(w‖v(t)‖pp)}1/p <∞,

where w := exp(−(‖u0‖p + ‖v0‖p + ‖∇v0‖p). In this argument, we may suppose that the

initial conditions u0(.) and v0(.) are random processes indexed by R2 and independent of

the noise F .

Define the operator A on R by

A(v)(t, x) :=
4∑
i=1

Ai(t, x),

where

A1(t, x) :=

∫
R2

S(t, x− y)v0(y)dy,

A2(t, x) :=
∂

∂t

(∫
R2

S(t, x− y)u0(y)dy

)
,

A3(t, x) :=

∫ t

0

∫
D(s)

S(t− s, x− y)χR(‖v(s, ·)‖p)b(v(s, y)) dyds,

A4(t, x) :=

∫ t

0

∫
D(s)

S(t− s, x− y)σ(v(s, y))F (dy, ds).

Clearly,

E(w‖A(v)(t, ·)‖pp) ≤ 4p−1

4∑
i=1

Ti(t),

where Ti(t) = E(w‖Ai(v)(t, ·)‖pp). Using Young’s inequality (with q = 1), we have

‖A1‖pR = sup
t≤T

T1(t) ≤ CpE

(
w

∫
R2

|v0(y)|pdy
)

= Cp < +∞ . (3.5)
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We have

A2(t, x) =

∫
|ξ|<1

1

2π
(1− |ξ|2)−

1
2u0(x+ tξ)dξ +

∫
R2

S(t, x− y)∇u0(y)dy

:= A1
2 + A2

2,

and, using Hölder’s inequality with respect to the measure 1
2π

(1− |ξ|2)−
1
2dx and Fubini’s

theorem, we obtain:

‖A1
2‖
p
R =≤ Cp sup

t≤T
E

[
w

∫
R2

∫
|ξ|<1

1

2π
(1− |ξ|2)−

1
2 |u0(x+ tξ)|pdξdx

]
≤ Cp sup

t≤T
E

[
w

(∫
|ξ|<1

1

2π
(1− |ξ|2)−

1
2dξ

)
‖u0‖pp

]
≤ Cp . (3.6)

On the other hand, Young’s inequality yields

‖A2
2‖
p
R ≤ Cpw‖∇u0‖pp ≤ Cp. (3.7)

Finally, using again (A.9), Lemma A.4 and the fact that σ is bounded, computations

similar to that proving (3.2) and (3.3) show that ‖A3‖R and ‖A4‖R are also bounded by

a constant only depending on p and R . Hence the operator A maps the Banach space R

into itself.

Furthermore, let u and v belong to R; using arguments similar to the previous ones,

one proves the existence of β > −1 such that

E (w‖A(u)(t, ·)−A(v)(t, ·)‖rr) (3.8)

≤ Cp,R sup
t≤T

E

(
w

∫ t

0

(t− s)β‖u(s, ·)− v(s, ·)‖rrds
)

(3.9)

≤ Cp,R,βT
β+1 sup

t≤T
E(w‖u(t, ·)− v(t, ·)‖rr) ;

hence A is a contraction on R provided T < t1 := C
− 1
β+1

p,R,β . Consequently, there exists

a unique solution to (3.1) on [0, t1/2]; notice that the constant Cp,R,β does not depend

on the initial conditions u0 and v0. Considering next the initial conditions u(t1, ·) and
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∂u
∂t

(t1, ·) at time t1, we get a solution to (3.1) on the interval [t1/2, t1] in the same way,

with the obvious modification of the Banach space R and the operator A. Iterating this

procedure, we thus construct a solution to (3.1) on the whole interval [0, T ]. Finally, if

τR = inf{t ≥ 0 : ‖u(t, .)‖p ≥ R} ∧ T and τ∞ = limR→+∞ τR, we deduce the local existence

(on the interval [0, τ∞[) of a solution to equation (1.6).

The problem of global existence is addressed in the next section.

4 Global existence of a solution.

The purpose of this section is to prove the following result:

Proposition 4.1 Under the assumptions (a) or (b) of Theorem 2.1, equation (1.6) ad-

mits a solution u ∈ C([0, T ];Lp(Θ)) for p satisfying the requirements stated in Theorem

2.1. Moreover, for all t ∈ [0, T ], the function u(t, ·) vanishes outside D(t).

The proof is divided into several steps.

Step 1: We first ”regularize” the equation (1.6). For every n ≥ 1, let bn and Bn be defined

as follows:

bn(r) :=


−|r|ρ · r if |r| ≤ n,
−nρ+1 − (ρ+ 1)nρ(r − n) if r ≥ n,
nρ+1 − (ρ+ 1)nρ(r + n) if r ≤ −n ,

(4.1)

and

Bn(r) =

∫ r

0

bn(u)du. (4.2)

Then −Bn is a non-negative even function. Let us introduce the following SPDE:
∂2un
∂t2

(t, x)−∆un(t, x)− bn(un(t, x)) = σ(un(t, x))Ḟ (t, x),

un(0, x) = u0(x),
∂un
∂t

(0, x) = v0(x) .

(4.3)
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The properties of bn and its antiderivative Bn are proved in Lemma A.1 of the Appendix.

Since in particular bn is globally Lipschitz on R, Theorem 1.2. of [10] provides a unique

weak solution to this equation, which is also the unique solution to the following evolution

equation

un(t, x) = u(0)(t, x) + ηn(t, x) +

∫ t

0

∫
R2

S(t− s, x− y)bn(un(s, y))dyds, (4.4)

where

ηn(t, x) =

∫ t

0

∫
R2

S(t− s, x− y)σ(un(s, y))F (dy, ds). (4.5)

We remark that, as the solution to (2.6), un satisfies

un(t, x) = 0 if x 6∈ D(t). (4.6)

We shall prove that {un}n admits a subsequence which converges in distribution to a

solution u to (1.6) (or (2.2)). We at first study the behaviour of the stochastic integrals:

Lemma 4.1 Let σ satisfy (C3), F satisfy Hβ, ζn be a predictable random field on [0, T ]×Θ

such that, for all t ∈ [0, T ], the support of ζn(t, ·) is included in D(t). Then the sequence

of processes

In(t, x) :=

∫ t

0

∫
R2

S(t− s, x− y)σ(ζn(s, y))F (dy, ds)

is uniformly tight in C([0, T ] × Θ), and hence in C([0, T ];Lp(Θ)) for any p ∈ [1,+∞[.

Moreover, for all t ∈ [0, T ], the support of In(t, ·) is included in D(t).

Proof of Lemma 4.1: The support property of In is clear. Given 0 ≤ t < t′ ≤ T

x, x′ ∈ Θ, the boundedness of σ, Burkholder’s inequality and (A.15) imply that for 0 <

δ <
1

2
(β ∧ 1),

E[|In(t, x)− In(t′, x′)|p) ≤ C

(∫ T

0

‖σ(u(s, .)) [S(t− s, x− .)− S(t′ − s, x′ − .)] ‖2
H ds

) p
2

≤ C‖σ‖p∞ (|t− t′|+ |x− x′|)pδ . (4.7)
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Set D :=
⋃

0≤t≤T

(
{t} ×D(t)

)
; for γ < 1

p
+ δ, E

(∫
D

∫
D

(
|In(ξ)−In(ξ′)|
|ξ−ξ′|γ

)p
dξ dξ′

)
< +∞,

and on
{∫

D

∫
D

(
|In(ξ)−In(ξ′)|
|ξ−ξ′|γ

)p
dξ dξ′ ≤ λ

}
, 0 < δ̄ = γ − 4

p
< δ − 3

p
, the Garsia-Rodemich-

Rumsey lemma (see e.g. [14], p. 60) yields ‖In(·, ·)‖C δ̄,δ̄(D) ≤ λ
1
p . Hence, given p > 3

δ
and

0 < δ̄ < δ − 3
p
,

sup
n
P

(
‖In(·, ·)‖C δ̄,δ̄(D) ≥ λ

)
≤ Cλ−p

2

,

so that by Ascoli’s theorem In is uniformly tight in C(D). 2

Define η?n := sup(t,x)∈D |ηn(t, x)| ∨ 1. Applying Lemma 4.1 to un yields in particular

sup
n
E(η?n) <∞ (4.8)

and

lim
C−→+∞

sup
n
P (η?n ≥ C) = 0. (4.9)

Set ξn(t, x) = un(t, x) − ηn(t, x); then ξn is the unique (weak) solution to the following

semilinear wave equation (defined ω by ω):
∂2ξn
∂t2

(t, x)−∆ξn(t, x)− bn(ξn(t, x) + ηn(t, x)) = 0,

ξn(0, x) = u0(x),
∂un
∂t

(0, x) = v0(x) .

(4.10)

Step 2: We now prove a suitable a priori estimate for the sequence {ξn}, and follow here

the method of J.L. Lions [7]. Let H1(Θ) = {v ∈ L2(Θ) : ∂v
∂xi
∈ L2(Θ), i = 1, 2}, endowed

with the norm

‖u‖H1(Θ) =

(
‖v‖2

2 +
2∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

2

) 1
2

(4.11)

and let H1
0 be the closure of D(Θ) in H1(Θ). Let vi be a sequence of elements of

Lρ+2(Θ)
⋂
H1

0 (Θ) which is total in this set. Given u, v ∈ H1
0 (Θ), set

a(u, v) :=
2∑
j=1

∫
Θ

∂u

∂xi

∂u

∂xi
dx. (4.12)
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Then
√
a(u, u) is a norm on H1

0 (Θ) equivalent with ‖u‖H1(Θ). For each n ≥ 1, we

approximate ξn by the sequence (ξkn, k ≥ 1) defined by

ξkn =
k∑
i=1

gki,n(t)vi(x), (4.13)

where the functions (gki,n, 1 ≤ i ≤ k) are determined by the conditions
(
(ξkn)′′(t, ·), vj

)
+ a

(
ξkn(t, ·), vj

)
−
(
bn
(
ξkn(t, ·) + ηn(t, ·)

)
, vj
)

= 0 , 1 ≤ j ≤ k,
ξkn(0, x) = uk0(x),
∂ξkn
∂t

(0, x) = vk0(x) ,

(4.14)

where (·, ·) denotes the usual scalar product on L2(Θ) and{
uk0(x) =

∑k
i=1 αi,nvi −→ u0 inLρ+2(Θ)

⋂
H1

0 (Θ) when k → +∞,
vk0(x) =

∑k
i=1 βi,nvi −→ v0 in L2(Θ) when k → +∞.

(4.15)

For a.e. ω, the system (4.14)-(4.15) of ordinary differential equations has a unique solution

on the time interval
[
0, tkn(ω)

]
with tkn(ω) ≤ T . This is due to the linear independence of

the functions vi, which yields det((vi, vj), 1 ≤ i, j ≤ k) 6= 0. In the sequel, we shall prove

that tkn = T .

Multiplying the first line of (4.14) by (gkj,n)′(t) and summing up for 1 ≤ j ≤ k, we

deduce

1

2

d

dt

[∥∥(ξkn)′(t, ·)
∥∥2

2
+ a

(
ξkn(t, ·), ξkn(t, ·)

)]
− d

dt

(∫
Θ

Bn(ξkn(t, x))dx

)
= Dk

n(t), (4.16)

where

Dk
n(t) =

∫
Θ

[
bn(ξkn(t, x) + ηn(t, x))− bn(ξkn(t, x))

]
(ξkn)′(t, x) dx .

Schwarz’s inequality and the Taylor formula yield

|Dk
n(t)| ≤ 1

2
‖(ξkn)′(t, ·)‖2

2 +
1

2

∫
Θ

∫ 1

0

(
b′n(ξkn(t, x) + rηn(t, x))

)2
η2
n(t, x) dr dx .

The inequality (A.4) in Lemma A.1 yields

|Dk
n(t)| ≤ 1

2
‖(ξkn)′(t, ·)‖2

2 + C

∫
Θ

[
−Bn(ξkn(t, x)) + |ηn(t, x)|2ρ + 1

]
η2
n(t, x) dx . (4.17)

15



Thus, for 0 ≤ t ≤ tkn, (4.16) and (4.17) imply that for any k ≥ 1:

1

2
‖(ξkn)′(t, ·)‖2

2 + C‖ξkn(t, ·)‖2
H1(Θ) −

∫
Θ

Bn(ξkn(t, x))dx

≤ 1

2

∫ t

0

‖(ξkn)′(s, ·)‖2
2ds− Cη?2n

∫ t

0

∫
Θ

Bn(ξkn(s, x)) dxds + Cη?2(ρ+1)
n + Cη?2n + C(n, k),

where

C(n, k) =
1

2
‖(ξkn)′(0, ·)‖2 + C ‖ξkn(0, ·)‖H1(Θ) −

∫
Θ

Bn(ξkn(0, x)) dx

=
1

2
‖vk0‖2

2 + C‖uk0‖H1 +

∫
Θ

|uk0(x)|ρ+2 dx ≤ C

for some constant C which does not depend on k and n; hence Gronwall’s lemma implies:

sup
0≤t≤tkn

(
‖(ξkn)′(t, ·)‖2

2 + ‖ξkn(t, ·)‖2
H1(Θ) −

∫
Θ

Bn(ξkn(t, x))dx

)
(4.18)

≤ C
[
1 + η?2(ρ+1)

n

]
exp

(
Cη?2n

)
.

Step 3: We now extract converging subsequences. Since −Bn is nonnegative, (4.18)

implies that for every n

sup
k≥1

sup
0≤t≤tkn

‖ξkn(t, ·)‖2
H1(Θ) <∞ ,

which means that tkn = T for all k. Recall that an Orlicz function Φ satisfies the condition

(∆2) if for any a > 1, lim supt→+∞
Φ(at)
Φ(t)

< +∞ (see [6] for details). According to (A.3),

|Bn| is an Orlicz function which satisfies (∆2) and its conjugate function |B̃n| also satisfies

(∆2); therefore L1([0, T ], |B̃n|)′ ' L∞([0, T ], |Bn|). Then (4.18) implies that there exists

a subsequence (ξskn )k which converges to ξ̃n in L∞([0, T ], H1
0 (Θ)

⋂
LBn(Θ)) weak-star and

(ξ
′sk
n ) converges to ξ̃′n in L∞([0, T ], L2(Θ)) weak-star (see e.g. [7]).

Since the inclusion H1(]0, T [×Θ) ↪→ L2(]0, T [×Θ) is compact, we can extract a further

subsequence, still denoted by (ξskn ), such that ξskn converges to ξ̃n in L2(]0, T [×Θ) and

dt⊗ dx a.s. on ]0, T [×Θ. Hence,

bn(ξskn + ηn) −→ bn(ξ̃n + ηn) dt⊗ dx a.s..
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Furthermore, (4.18) and (A.3) imply that (bn(ξskn + ηn), k ≥ 1) is uniformly integrable,

since

sup
k

sup
0≤t≤T

∫
Θ

|bn(ξskn (t, x) + ηn(t, x))|
ρ+2
ρ+1dx <∞ .

Therefore, extracting a further subsequence, we obtain that (bn(ξskn +ηn) , k ≥ 1) converges

to bn(ξ̃n+ηn) in L1(]0, T [×Θ) and to some limit ln in L∞([0, T ], L
ρ+2
ρ+1 (Θ)) weak-star. This

yields that ln = bn(ξ̃n + ηn). Letting k −→ +∞ in (4.14), we obtain
(

(ξ̃n)′′(t, ·), vj
)

+ a
(
ξ̃n(t, ·), vj

)
−
(
bn

(
ξ̃n(t, ·) + ηn(t, ·)

)
, vj

)
= 0,

ξ̃n(0, x) = u0(x),
∂ξ̃n
∂t

(0, x) = v0(x) .

Since {vj} is total in H1
0 (Θ), we conclude that ξ̃n satisfies (4.10), which by uniqueness

yields ξn = ξ̃n.

Therefore, letting k −→ +∞ in (4.18) and using Fatou’s lemma, we deduce that

∫ T

0

∫
Θ

|Bn(ξn(t, x))| dxdt ≤ T sup
0≤t≤T

lim inf
k

∫
Θ

|Bn(ξskn (t, x))| dxdt

≤ C
[
1 + η?2(ρ+1)

n

]
exp

(
Cη?2n

)
.

Since un = ξn + ηn and |ηn| is bounded by η?n, using (A.3) and (A.5) in Lemma A.1, we

deduce that for q = ρ+2
ρ+1

,

∫ T

0

∫
Θ

|bn(un(t, x))|qdxdt ≤
[
C1 + C2η

?(ρ+2)
n

]
exp

(
Cη?2n

)
. (4.19)

The following result gives a tightness criterion for a sequence of convolution of random

fields with the Green function.

Lemma 4.2 Let q ∈]1,+∞[; for v ∈ L∞([0, T ];Lq(Θ)), set

J(v)(t, x) :=

∫ t

0

∫
Θ

S(t− s, x− y)v(s, y)dyds.
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Let (ζn(t, x), n ≥ 1) be a sequence of random fields on [0, T ]×Θ such that for all t ∈ [0, T ],

ζ(t, ·) vanishes outside D(t) and such that there exists γ ∈]1,+∞[ and a sequence of finite

random variables (Mn;n ≥ 1) which satisfies the following conditions:

‖ζn‖Lγ([0,T ];Lq(Θ)) ≤Mn , (4.20)

lim
C−→+∞

sup
n
P(Mn ≥ C) = 0. (4.21)

Then, if p satisfies 0 <
1

q
− 1

p
<

1

2
, the sequence of processes (J(ζn);n ≥ 1) is uniformly

tight in C([0, T ];Lp(Θ)).

Proof of Lemma 4.2: Given R > 0, set

ΓR =
{
J(v) : v ∈ Lγ([0, T ];Lq(Θ)), ‖ζn‖Lγ([0,T ];Lq(Θ)) ≤ R

}
.

Lemma A.2 shows that if 0 <
1

q
− 1

p
<

1

2
, then

sup
J(v)∈ΓR

sup
t∈[0,T ]

‖J(v(t, ·))‖p = C(R) <∞, (4.22)

lim sup
h−→0

sup
|t−s|<h,s,t≤T

sup
J(v)∈ΓR

sup
t∈[0,T ]

‖J(v(t, ·)− J(v(s, ·))‖p = 0, (4.23)

lim sup
|z|−→0

sup
J(v)∈ΓR

sup
t≤T
‖J(v(t, ·))− J(v(t, ·+ z))‖p = 0. (4.24)

Therefore Ascoli-Arzela’s and Kolmogorov’s theorems (see [5], Lemma 3.3) imply that the

set ΓR is relatively compact in C([0, T ], Lp(Θ)). Furthermore, given ε > 0, assumptions

(4.20) and (4.21) imply the existence of some R > 0 such that

1− ε ≤ inf
n
P(Mn ≥ R) ≤ inf

n
P(J(ζn) ∈ Γn) ;

this concludes the proof. 2

¿From (4.19) and Lemma 4.2 (applied with γ = q =
ρ+ 2

ρ+ 1
), we deduce that the

sequence of processes ∫ t

0

∫
Θ

S(t− s, x− y)bn(un(s, y))dyds
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is uniformly tight in C([0, T ];Lp(Θ)) for q < p <
2q

2− q
, that is, for p ∈

]
ρ+ 2

ρ+ 1
,
2(ρ+ 2)

ρ

[
.

On the other hand, Lemma 4.1 implies that the sequence (ηn) is uniformly tight in

the same space. Hence, (4.4) implies that the sequence (un) itself is uniformly tight in

C([0, T ];Lp(Θ)). Thus, by Skorohod’s theorem, given subsequences (um) and (ul), there

exist further subsequences (m(k), l(k)), a probability space (Ω̂, F̂ , P̂) and a sequence of

random elements zk := (ũk, ūk, F̂k) in C([0, T ];Lp(Θ))2 × C([0, T ];D′(Θ)) such that zk

converges P̂-a.s. to z := (ũ, ū, F̂ ) when k → +∞, and the laws of zk and (um(k), ul(k), F )

are the same. Hence (F̂k, P̂) is a Gaussian random field such that for every i ≥ 1:

lim
k

sup
t∈[0,T ]

∣∣∣〈F̂k − F̂ , ei〉(t)∣∣∣ = 0 P̂− a.s. (4.25)

where (ei; i ≥ 1) is a complete orthonormal system of H made of elements of E . Using

Proposition 3.1, we will prove that ū = ũ by checking that both satisfy (2.1) with F̂

instead of F . Thus, for any ϕ ∈ D(R+×R2) with compact support included in [0, T ]×Θ,

∫ T

0

∫
Θ

(
∂2ϕ

∂t2
−∆ϕ

)
(t, x)ũk(t, x)dtdx (4.26)

=

∫
Θ

(
ϕ(0, x)v0(x)− ∂ϕ

∂t
(0, x)u0(x)

)
dx+

∫ T

0

∫
Θ

ϕ(t, x)σ(ũk(t, x))F̂k(dt, dx)

+

∫ T

0

∫
Θ

ϕ(t, x)bm(k)(ũk(t, x))dtdx.

Since p > 1 and (ũk) is bounded in C([0, T ], Lp(Θ)), the dominated convergence theorem

implies that the left hand-side of (4.26) converges P̂-a.s. to the left hand-side of (2.1) with

ũ instead of u.

We now need the following technical results to study the right hand side of (4.26):

Lemma 4.3 Let

W i(t) :=

∫ T

0

∫
R2

1[0,t] ⊗ ei(x)F (dx, ds), (4.27)
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(Fn, n ≥ 1) be Gaussian processes with the same covariance as F , W i
n be defined like W i

(with Fn instead of F ), hn(t, x);n ≥ 1) (resp. h(t, x)) be a sequence of (Fnt )- adapted

(resp. an Ft-adapted) random fields. Suppose that for every i ≥ 1,

lim
n

sup
t∈[0,T ]

∣∣W i
n(t)−W i(t)

∣∣ = 0 in probability , (4.28)

E(‖h‖2
L2([0,T ];H)) <∞ , (4.29)

lim
n
E(‖hn − h‖2

L2([0,T ];H)) = 0 . (4.30)

Then, for any ε > 0,

lim
n
P

(∣∣∣∣∫ T

0

∫
R2

hn(s, y)Fn(dy, ds)−
∫ T

0

∫
R2

h(s, y)F (dy, ds)

∣∣∣∣ > ε

)
= 0. (4.31)

Lemma 4.4 Let (vn) and v be random fields satisfying, for some p ∈ [ρ + 1,+∞[ the

following properties: ∫ T

0

∫
Θ

|u(t, x)|pdxdt <∞ a.s. , (4.32)

lim
n

∫ T

0

∫
Θ

|un(t, x)− u(t, x)|pdxdt = 0 a.s. (4.33)

Then for any φ ∈ C2([0, T ]×Θ) with compact support

lim
n

∫ T

0

∫
Θ

φ(t, x)[bn(un(t, x))− b(u(t, x))]dxdt = 0 a.s. (4.34)

Suppose that these two results hold. Then Lemma 4.4 implies that for P̂-almost every ω,

lim
k

∫ T

0

∫
Θ

φ(t, x)[bm(k)(ũk(t, x))− b(ũ(t, x))]dxdt = 0 (4.35)

On the other hand, Lemma 4.3 applied with hk(t, x) = ϕ(t, x)σ(ũk(t, x)) shows that in

P̂-probability

lim
k

(∫ T

0

∫
R2

ϕ(t, x)σ(ũk(t, x))F̂k(dy, ds)−
∫ T

0

∫
R2

ϕ(t, x)σ(ũ(t, x))F̂ (dy, ds)

)
= 0.

(4.36)
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Therefore, letting k −→ +∞ in (4.26) yields that ũ solves (2.1) with F̂ instead of F . A

similar argument shows that ū solves the same equation. Therefore, by Proposition 3.1,

we deduce that ũ = ū P̂-almost surely; hence the subsequences of C[0, T ];Lp(Θ))-valued

random variable (um(k)) and (ul(k)) converge weakly to the same limit. Using a result of

Gyöngy and Krylov (see [5], Lemma 4.1), we conclude that un converges in P̂-probability

to some random variable u ∈ C[0, T ];Lp(Θ)).

Applying again the dominated convergence theorem, Lemma 4.3 with Fn = F and

hn(t, x) = ϕ(t, x)σ(un(t, x)), Lemma 4.4 and letting n −→ +∞ in the weak formulation

of (4.3), that is:

∫ T

0

∫
Θ

(
∂2ϕ

∂t2
−∆ϕ

)
(t, x)un(t, x)dtdx

=

∫
Θ

(
ϕ(0, x)v0(x)− ∂ϕ

∂t
(0, x)u0(x)

)
dx+

∫ T

0

∫
Θ

ϕ(t, x)σ(un(t, x))F (dt, dx)

+

∫ T

0

∫
Θ

ϕ(t, x)bn(un(t, x))dtdx. (4.37)

we finally conclude that u solves (2.1), which concludes the proof of existence. 2

It only remains to prove Lemmas 4.3 and 4.4.

Proof of Lemma 4.3: Note first that by definition (W i, i ≥ 1) (resp. (W i
n, i ≥ 1)) are

sequences of independent standard Brownian motions. Furthermore, recall that HT :=

L2([0, T ];H) is isomorphic to the reproducing kernel space of F (resp. Fn) and that F

can be identified with the Gaussian process {W (h), h ∈ HT} defined by

W (h) =
∑
j≥0

∫ T

0

〈h(s), ej〉HdW j(s).

Given ε > 0, using (4.29), we choose i0 such that

E

(∑
i≥i0

∫ T

0

‖hi(s)‖2
Hds

)
< ε
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where hi(s) = 〈h(s, ·), ei〉H. Then using (4.30), we choose n0 such that for n ≥ n0

E

(∑
i≥i0

∫ T

0

‖hin(s)‖2
Hds

)
< 2ε.

The proof of (4.31) then reduces to checking that for any ε > 0,

lim
n
P

(
i0∑
i=1

∣∣∣∣∫ T

0

hin(s)dW i
n(s)−

∫ T

0

hi(s)dW i(s)

∣∣∣∣ > ε

3

)
= 0. (4.38)

Clearly, (4.30) implies that for every i ≥ 1

lim
n
E

(∫ T

0

∣∣hin(s)− hi(s)
∣∣2 ds) = 0.

Using (4.28), a generalization of Skorohod’s argument (see e.g. [5], p.282) yields that for

every i ≥ 1 and ε > 0

lim
n
P

(∣∣∣∣∫ T

0

hin(s)dW i
n(s)−

∫ T

0

hi(s)dW i(s)

∣∣∣∣ > ε

3(i0 + 1)

)
= 0.

This concludes the proof of (4.31). 2

Proof of Lemma 4.4: To prove (4.34), it clearly suffices to check that for φ ∈ C2
c ([0, T ]×

Θ),

lim
n

∫ T

0

∫
Θ

φ(t, x)[bn(un(t, x))− bn(u(t, x))]dxdt = 0 a.s. (4.39)

and

lim
n

∫ T

0

∫
Θ

φ(t, x)[bn(u(t, x))− b(u(t, x))]dxdt = 0 a.s. (4.40)

Using the Taylor formula, (A.1) in Lemma A.1, then Hölder’s inequality with the conju-

gate exponents p and p′ = p
p−1

, (4.32) and (4.33) we obtain∣∣∣∣∫ T

0

∫
Θ

φ(t, x)[bn(un(t, x))− bn(u(t, x))]dxdt

∣∣∣∣
≤ C‖φ‖∞

∫ T

0

∫
Θ

|un(t, x)− u(t, x)| (|un(t, x)|ρ + |u(t, x)|ρ) dxdt

≤ C‖φ‖∞
(∫ T

0

∫
Θ

|un(t, x)− u(t, x)|pdxdt
) 1

p (
‖un‖ρLp′ρ([0,T ]×Θ)

+ ‖u‖ρ
Lp′ρ([0,T ]×Θ)

)
≤ C‖φ‖∞‖un − u‖Lp([0,T ]×Θ) ,
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since p > ρ + 1 and ρ ∈]0, 2[, so that p′ρ ≤ p; this proves (4.39). Furthermore, (4.32)

implies that for any p̄ < p we have

|u(t, x)|p̄ ∈ L
p
p̄ ([0, T ]×Θ) ;

hence |u(t, x)|p̄ is uniformly integrable. Therefore, since p > ρ + 1, given ε > 0, we can

choose M ≥ 1 such that

∫ ∫
|u(t,x)|≥M

|u(t, x)|ρ+1dxdt < ε.

Hence, using the fact bn(r) = b(r) when |r| ≤ n and (A.2) in Lemma A.1, we conclude

that for n ≥M , ∣∣∣∣∫ T

0

∫
Θ

φ(t, x)[bn(u(t, x))− b(u(t, x))]dxdt

∣∣∣∣
≤ C‖φ‖∞

∫ ∫
|u(t,x)|≥M

|u(t, x)|ρ+1dxdt ≤ C ‖φ‖∞ ε.

This concludes the proof of (4.40). 2

A Appendix.

We begin this section by a technical result concerning the approximation bn of −|r|ρr

defined in section 4.

Lemma A.1 For each n ≥ 1, let bn and Bn de defined by (4.1) and (4.2) respectively.

Then bn is a C1, globally Lipschitz function on R, Bn is an even function and |Bn| is an

Orlicz function which satisfies (∆2). Furthermore:

(i) There exists a constant C such that for every r ∈ R,

sup
n
|b′n(r)| ≤ C|r|ρ, (A.1)

sup
n
|bn(r)| ≤ C|r|ρ+1. (A.2)
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(ii) There exists a constant C such that for q :=
ρ+ 2

ρ+ 1
and for every n ≥ 1

and r ∈ R

|bn(r)|q ≤ C (1 + |Bn(r)|) ≤ C(1 + |r|ρ+2) . (A.3)

(iii) There exists a constant C such that for every n ≥ 1, r1, r2 ∈ R,

|b′n(r1 + r2)|2 ≤ C
(
1 + |Bn(r1)|+ |r2|2ρ

)
. (A.4)

(iv) There exists a constant C such that for every n ≥ 1, r1, r2 ∈ R,

|Bn(r1 + r2)| ≤ C
(
|Bn(r1)|+ |r2|ρ+2

)
. (A.5)

Proof: It is clear that bn is odd, so that b′n and Bn are even (since Bn(0) = 0). On

]0,+∞[, the function b(r) = −|r|ρr is negative, decreasing, so that bn is clearly decreasing

on R, negative on ]0,+∞[ (resp. positive on ] −∞, 0[). Furthermore, sup|r|≥n |b′n(r)| =

|b′(n)| = (ρ + 1)nρ, which yields (A.1) and the fact that bn is globally Lipschitz. As for

(A.2), it is simply obtained by integration of (A.1).

Now, as Bn is even and bn is negative on ]0,+∞[, −Bn is non-negative on R and its

restriction to [0 +∞[ is clearly an Orlicz function which satisfies (∆2) (see [6] for basic

results on Orlicz functions). If |r| ≤ n, inequality (A.3) reduces to

|r|q(ρ+1) ≤ C
(
1 + |r|ρ+2

)
,

which is clear given the value of q. If |r| ≥ n, (A.3) can be deduced form

(
nρ+1 + (ρ+ 1)nρ(|r| − n)

)q ≤ C
(
nρ+2 + nρ+1|r|+ nρr2

)
,

which again is clear, given the value of q and the fact that n ≤ |r|.
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We now prove (A.4). We remark that the corresponding inequality for b

|b′(r1 + r2)|2 ≤ C
(
1 + |B(r1)|+ |r2|2ρ

)
, (A.6)

is satisfied insofar as ρ ≤ 2 (B being the antiderivative of b which is zero at r = 0). This

fact will be used in the sequel.

• If |r1 + r2| ≤ n: Then there are 3 subcases:

(a) If |r1| ≤ n, then (A.6) yields

|b′n(r1 + r2)|2 = |b′(r1 + r2)|2 ≤ C
(
1 + |B(r1)|+ |r2|2ρ

)
,

and, as |r1| ≤ n, |B(r1)| = |Bn(r1)|.

(b) If r1 ≥ n, since r1 + r2 ≤ n, we have 0 ≤ r1 − n ≤ −r2, which means in

particular that r2 ≤ 0. Furthermore, |Bn| increases on [0,+∞[, so that

|b′n(r1 + r2)|2 = |b′(r1 + r2 − n+ n)|2

≤ C
(
1 + |B(n)|+ |r1 + r2 − n|2ρ

)
= C

(
1 + |Bn(n)|+ |r1 + r2 − n|2ρ

)
≤ C

(
1 + |Bn(r1)|+ 22ρ−1|r2|2ρ + 22ρ−1|r1 − n|2ρ

)
,

and since |r1 − n| ≤ |r2|, we have

|b′n(r1 + r2)|2 ≤ C
(
1 + |Bn(r1)|+ |r2|2ρ

)
.

(c) If r1 ≤ −n, since −n ≤ r1 + r2, we clearly have r2 ≥ −n − r1 = |r1 + n|.

This implies

|b′n(r1 + r2)|2 = |b′((r1 + r2 + n) + (−n))|2

≤ C
(
1 + |B(−n)|+ |r1 + r2 + n|2ρ

)
≤ C

(
1 + |Bn(r1)|+ 22ρ−1|r2|2ρ + 22ρ−1|r1 + n|2ρ

)
,
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and we conclude as in case (b).

•If r1 + r2 ≥ n: Then we have

|b′n(r1 + r2)|2 = |b′(n)|2.

(a) If |r1| ≤ n, we have 0 ≤ n− r1 ≤ r2 and (A.6) used with r2 = n− r1 yields

|b′(n)|2 ≤ C
(
1 + |B(r1)|+ |n− r1|2ρ

)
= C

(
1 + |Bn(r1)|+ |n− r1|2ρ

)
≤ C

(
1 + |Bn(r1)|+ |r2|2ρ

)
.

(b) If r1 ≥ n, since |Bn| increases on [0,+∞[, using (A.6) with r2 = 0 we

obtain:

|b′(n)|2 ≤ C (1 + |B(n)|) ≤ C
(
1 + |Bn(r1)|+ |r2|2ρ

)
.

(c) Finally, if r1 ≤ −n, we have r2 ≥ n − r1 ≥ 2n; (A.6) used with r1 = −n

and r2 = 2n yields

|b′(n)|2 ≤ C
(
1 + |B(−n)|+ |2n|2ρ

)
≤ C

(
1 + |Bn(−n)|+ |r2|2ρ

)
,

which the required result.

The case r1 + r2 ≤ −n, which is similar, is omitted.

We finally prove (A.5). We remark that the same inequality holds trivially for B

instead of Bn. As before, we divide the proof into several cases.

• If |r1 + r2| ≤ n, then

(a) If |r1| ≤ n, we deduce

|Bn(r1 + r2)| = |B(r1 + r2)| ≤ C(|B(r1)|+ |r2|ρ+2) = C(|Bn(r1)|+ |r2|ρ+2).
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(b) If r1 ≥ n, we have 0 ≤ r1 − n ≤ −r2, that is |r1 − n| ≤ |r2|. Hence

|Bn(r1 + r2)| = |B(r1 + r2)| ≤ C[|B(n)|+ |r2 + r1 − n|ρ+2]

≤ C[|Bn(n)|+ 2ρ+1(|r2|ρ+2 + |r1 − n|ρ+2]

≤ C[Bn(r1)|+ 2ρ+2|r2|ρ+2]

(since |Bn| increases on [0,+∞[).

(c) The case r1 ≤ −n is similarly dealt with.

• If r1 + r2 ≥ n, then there exists a constant C (which does not depend on n) such that

|Bn(r1 + r2)| =
∣∣∣∣− nρ+2

ρ+ 2
− nρ+1(r1 + r2 − n)− ρ+ 1

2
nρ(r1 + r2 − n)2

∣∣∣∣ ≤ C |r1 + r2|ρ+2 .

(A.7)

(a) If |r1| ≤ n, then |Bn(r1)| = |r1|ρ+2

ρ+2
and we have

|Bn(r1 + r2)| ≤ C(|Bn(r1)|+ |r2|ρ+2).

(b) If r1 ≥ n, then

Bn(r1 + r2) = Bn(r1)− nρ+1 r2 −
ρ+ 1

2
nρ r2 [2(r1 − n) + r2] .

Since |Bn| increases on [0,+∞[, if |r2| ≤ n we clearly obtain

|Bn(r1 + r2)| ≤ |Bn(r1)|+ C

(
nρ+2

ρ+ 2
+ nρ+1 (r1 − n)

)
≤ C|Bn(r1)| ≤ C(|Bn(r1)|+ |r2|ρ+2) .

If on the contrary |r2| ≥ n, using Schwarz’s inequality, we obtain

|Bn(r1 + r2)| ≤ |Bn(r1)|+ C|r2|ρ+2 + 2nρ|r2| |r1 − n|

≤ |Bn(r1)|+ C|r2|ρ+2 + Cnρ
(
|r1 − n|2 + r2

2

)
≤ C(|Bn(r1) + |r2|ρ+2) .
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(c) Finally, if r1 ≤ −n, then r2 ≥ 2n and

Bn(r1) = − n
ρ+2

ρ+ 2
+ nρ+1(r1 + n)− ρ+ 1

2
nρ(r1 + n)2 .

Hence, we have

|Bn(r1 + r2)| ≤ |Bn(r1)|+ C nρ+1 |r2 − 2n|+ Cnρ (r2 − 2n)2

≤ C(|Bn(r1)|+ |r2|ρ+2 .

The last case r1 + r2 ≤ −n is similarly dealt with. This concludes the proof. 2

We now prove a series of technical results on the fundamental solution S of the classical

wave equation in the plane. Let q ≥ 1, V be an open subset of R2 (not necessarily

bounded), let v ∈ L∞([0, T ];Lq(V)) and set

J(v)(t, x) :=

∫ t

0

∫
V

S(t− s, x− y)v(s, y)dyds. (A.8)

To lighten the notation, we shall denote by ‖ · ‖p the usual norm in Lp(V). The following

lemma provides continuity properties for the operator J .

Lemma A.2 Let p, q ∈ [1,+∞[ be such that κ := 1 +
1

p
− 1

q
∈]

1

2
, 1[, T > 0, γ ∈ [1,+∞[

and v ∈ Lγ([0, T ];Lq(V)). Then there exist constants Ci, 1 ≤ i ≤ 5, which do not depend

on V and such that:

(i) For t ∈ [0, T ] and γ > (2κ)−1,

‖J(v)(t, ·)‖p ≤ C1

∫ t

0

(t− s)2κ−1‖v(s, ·)‖qds ≤ C2t
2κ− 1

γ

(∫ t

0

‖v(s, ·)‖γqds
) 1

γ

.

(A.9)

(ii) For κ̄ ∈]0, κ− 1
2
[ and z ∈ R2,

‖J(v)(t, ·)− J(v)(t, ·+ z)‖p ≤ C3|z|κ̄
∫ t

0

(t− s)κ̄‖v(s, ·‖qds

≤ C4|z|κ̄tκ̄+1− 1
γ

(∫ t

0

‖v(s, ·)‖γqds
) 1

γ

.(A.10)
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(iii) For κ̄ ∈]0, κ− 1
2
[ and γ ∈]1,∞[,

‖J(v)(t, ·)− J(v)(s, ·)‖p ≤ C5|t− s|κ̄∧(
γ−1
γ )
(∫ s∨t

0

‖v(r, ·)‖γqdr
) 1

γ

. (A.11)

Remark A.2: If γ = +∞, p > 2ρ and q = p
ρ+1

, we have κ > 1
2
. Thus (A.11) yields the

existence of δ > 0 such that J is a bounded linear operator from L∞([0, T ];Lq(V)) into

Cδ([0, T ];Lp(V)).

Proof: (i) We first remark that ‖S(t, ·)‖r is convergent if and only if r < 2, and that

‖S(t, ·)‖rr ≤ Ct2−r (A.12)

where the constant C does not depend on V. Using Minkovski’s inequality, then Young’s

inequality for
1

p
=

1

q
+

1

r
− 1, κ = 1

r
, we deduce

‖J(v)(t, ·)‖p ≤ C

∫ t

0

‖S(t− s, ·) ? v(s, ·)‖pds ≤ C

∫ t

0

‖S(t− s, ·)‖r ‖v(s, ·)‖qds

≤ C

∫ t

0

(t− s)2κ−1 ‖v(s, ·)‖qds.

Then Hölder’s inequality concludes the proof of (A.9).

(ii) A similar computation yields

‖J(v)(t, ·)− J(v)(t, ·+ z)‖p ≤ C

∫ t

0

‖S(t− s, ·)− S(t− s, ·+ z)‖r ‖v(s, ·)‖qds.

Using the proof of Lemma A.4 in [10], we conclude that for 1 < r < 2 and 0 < r̄ < 1− r
2
,

A1 =

∫
|y+z|<|y|<s

∣∣∣∣∣ 1√
s2 − |y|2

− 1√
s2 − |y + z|2

∣∣∣∣∣
r

dy ≤ C|z|r̄ sr̄. (A.13)

On the other hand, the triangular inequality implies that if |y + z| > s and |y| < s, we

have (s− |z|)+ < |y| < s, so that

A2 =

∫
|y|<s<|y+z|

(s2 − |y|2)−
r
2dy ≤ C

∫ s

(s−|z|)+

(s2 − v2)−
r
2 v dv

≤ Cs1− r
2 |z|1−

r
2 . (A.14)
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The inequalities (A.13) and (A.14) imply that for 0 < κ̄ < 1
r
− 1

2
= κ− 1

2
,

‖S(s, .)− S(s, .+ z)‖r ≤ C(A1 + A2) ≤ C|z|κ̄ sκ̄ ,

and hence

‖J(v)(t, ·)− J(v)(t, ·+ z)‖p ≤ C

∫ t

0

|z|κ̄ (t− s)κ̄‖v(s, ·)‖q ds .

Again, Hölder’s inequality concludes the proof of (A.10).

(iii) Similar computations yield, for 0 ≤ s ≤ t ≤ T

‖J(v)(t, ·)− J(v)(s, ·)‖p ≤
∫ s

0

‖S(t− u, ·)− S(s− u, ·)‖r ‖v(u, ·)‖q du

+

∫ t

s

‖S(t− u, ·)‖r ‖v(u, ·)‖q du.

Fix λ ∈]0;κ− 1
2
[; then, for 0 ≤ t′ < t ≤ T , we have∫
|z|<t′

∣∣∣∣∣ 1√
t′2 − |z|2

− 1√
t2 − |z|2

∣∣∣∣∣
r

dz

≤ C

∫ t′

0

(
t2 − t′2

(t′2 − v2)
1
2 (t2 − v2)

1
2 [(t′2 − v2) + (t2 − v2)]

1
2

)λr

(
1

(t′2 − v2)
1
2

+
1

(t2 − v2)
1
2

)(1−λ)r

v dv

≤ C |t− t′|λr
∫ t′

0

v dv

(t′2 − v2)
3λr
2

+
(1−λ)r

2

≤ C |t− t′|λr t′2−r−2λr .

Hence, using (A.12) for the second term, we deduce

‖J(v)(t, ·)− J(v)(s, ·)‖p

≤ C

{∫ s

0

(t− s)λ(s− u)2κ−1−2λ‖v(u, ·)‖qdu+

∫ t

s

u2κ−1‖v(u, ·)‖q du
}
.

Thus, Hölder’s inequality implies that for γ ∈]1,+∞[,

‖J(v)(t, ·)− J(v)(s, ·)‖p

≤ C

{
(t− s)λ

(∫ s

0

‖v(u, ·)‖γq ds
) 1

γ

+ (t− s)
γ−1
γ

(∫ t

s

‖v(u, ·)‖γq ds
) 1

γ

}
.
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This completes the proof of (A.11). 2

The following upper estimate for the increments of the Green function S has been

proved in [9], Lemmas A.2 and A.6. Suppose that f satisfies (Hβ); then for δ ∈]0, β ∧ 1[,

0 ≤ t ≤ t′ ≤ T , x, x′ ∈ R2:

∫ T

0

‖S(t− s, x− ·)− S(t′ − s, x′ − ·)‖2
H ds ≤ C (|t− t′|+ |x− x′|)δ . (A.15)

The following lemma provides an upper estimate of an integral generalizing the function

J(s) introduced in [10], identity (A.1).

Lemma A.3 For s ∈ [0, T ], λ > 0 and p ∈ [1,+∞[, set

I(s) :=

∫
R2

∫
R2

S(s, y)pf(|y − z|)λS(s, z)pdydz .

(a) Suppose that f(r) = r−α for some α ∈]0; 2[. Then for 1 ≤ p < 2∧(3−λα)∧(4−2λα),

one has

I(s) ≤ C s4−2p−λα. (A.16)

(b) Suppose that the function f satisfies (Hβ) for β ∈]0, 2[. If λ ∈]0, 1[ and 1 ≤ p <

2 ∧ (3− 2λ) ∧ [4− 2λ(2− β)] ∧ (5
2
− λ), then one has

I(s) ≤ C s4−2p−λ(2−β). (A.17)

Proof: The change of variables x = (u cos(θ0), u sin(θ0)), z = (v cos(θ+ θ0), v sin(θ+ θ0))

and r = cos(θ) used in the proof of Lemma A.1 in [10] and Fubini’s theorem yield

I(s) ≤ C

∫ s

0

udu

(s2 − u2)
p
2

∫ 2u

0

vf(v)λdv

∫ 1

v
2u

dr

(1− r) 1
2 (s2 − u2 − v2 + 2uvr)

p
2

≤ C (I1(s) + I2(s)) ,
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where

I1(s) =

∫ 2s

0

vf(v)λdv

∫ s

v
2

u
3
2du

(s2 − u2)
p
2 (u− v

2
)

1
2

∫ 1
2

(1+ v
2u

)

v
2u

dr

(s2 − u2 − v2 + 2uvr)
p
2

,

I2(s) =

∫ 2s

0

vf(v)λdv

∫ s

v
2

udu

(s2 − u2)
p
2

[
(s2 − u2) + v(u− v

2
)
] p

2

∫ 1

1
2

(1+ v
2u

)

dr

(1− r) 1
2

.

Since p < 2, for r ≤ 1
2
(1 + v

2u
) one has

(s2 − u2 − v2 + 2uvr)1− p
2 ≤

[
s2 − (u− v

2
)2 − v2

4

]1− p
2

≤ s2−p,

and hence, since ln(1 + x) ≤ Cxb for x > 0 and b ∈]0, 1− p
2
[,

I1(s) ≤
∫ 2s

0

vf(v)λ dv

∫ s

v
2

u
3
2du

(s2 − u2)
p
2 (u− v

2
)

1
2

∫ 1
2

(1+ v
2u

)

v
2u

s2−pdr

s2 − u2 − v2 + 2uvr

≤ s2−p
∫ 2s

0

f(v)λ dv

∫ s

v
2

u
1
2

(s2 − u2)
p
2 (u− v

2
)

1
2

ln

(
1 +

v(u− v
2
)

s2 − u2

)
du

≤ s2−p
∫ 2s

0

vbf(v)λdv

∫ s

v
2

s
1
2

(
u− v

2

)b− 1
2

(s− u)−b−
p
2 s−b−

p
2du

≤ Cs
5
2
− 3p

2
−b
∫ 2s

0

vbf(v)λ(s− v

2
)

1
2
− p

2 dv . (A.18)

In the last inequality, we have used the fact that for x1 < x2,

∫ x2

x1

(x− x1)r1 (x2 − x)r2dx =

{
Cr1,r2 (x2 − x1)1+r1+r2 if r1 > −1 and r2 > −1 ,
+∞ otherwise.

(A.19)

On the other hand, let p− 1 < γ < 3
2
; using again (A.19), we obtain

I2(s) ≤ C

∫ 2s

0

vf(v)λ dv

∫ s

v
2

u
1
2 (u− v

2
)

1
2 (s2 − u2)−p+γ

[
v(u− v

2
)
]−γ

du

≤ C s
1
2
−p+γ

∫ 2s

0

v1−γf(v)λ(s− v

2
)

3
2
−pdv . (A.20)

We then consider separately the two cases:

(a) If f(r) = r−α, from (A.19) we deduce that the right hand side of (A.18) converges

if and only if b−λα > −1 and 1
2
− p

2
> −1; then it is equal to C s4−2p−λα. The constraints
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on b: 0 ∨ (λα− 1) < b < 1− p
2

and p < 3 are compatible if and only if p < 2 ∧ (4− 2λα).

On the other hand, the right hand side of (A.20) converges if and only if 1−γ−λα > −1,

3
2
− p > −1. The constraints on γ: p − 1 < γ < 3

2
, 1 − γ − λα > −1 and p < 5

2
are

compatible if and only if p < 5
2
∧ (3− λα). This concludes the proof of (A.16).

(b) If (Hβ) holds and 0 < λ < 1, Hölder’s inequality implies that∫ 2s

0

vbf(v)λ(s− v

2
)

1
2
− p

2dv ≤
(∫ 2s

0

v1−βf(v)dv

)λ
×
(∫ 2s

0

v
b−λ(1−β)

1−λ (s− v

2
)

1−p
2(1−λ)dv

)1−λ

.

Thus (A.19) implies that the last integral converges if and only if b− λ(1− β) > −1 + λ

and 1 − p > −2 + 2λ, for 0 < b < 1 − p
2
; then it is equal to Csb−λ(1−β)+ 1−p

2
+1−λ. The

constraints on b, p, β are compatible if and only if p < (3 − 2λ) ∧ (4 − 2λ(2 − β)), and

I1(s) is dominated by C s4−2p−λ(2−β). On the other hand, using again Hölder’s inequality,

we obtain for p− 1 < γ < 3
2
,∫ 2s

0

v1−γf(v)λ(s−v
2

)
3
2
−pdv ≤

(∫ 2s

0

v1−βf(v)dv

)λ
×
(∫ 2s

0

v
1−γ−λ(1−β)

1−λ (s− v

2
)

3−2p
2(1−λ)dv

)1−λ

.

The last integral converges if and only if 1−γ−λ(1−β) > −1+λ and 3
2
−p > −1+λ, and

is equal to C s1−γ−λ(1−β)+ 3
2
−p+1−λ. The constraints on p, γ, λ are compatible for λ ∈]0; 1[

if p < 2 ∧ (3 − λ(2 − β)) ∧ (5
2
− λ) and yield I2(s) ≤ C s4−2p−λ(2−β). Finally, in order to

obtain (A.17), we need λ ∈]0, 1[ and 1 ≤ p < 2∧ (3−λ(2−β))∧ (5
2
−λ)∧ (4−2λ(2−β)).

2

Finally, the following lemma provides a useful tool to estimate the moments of stochas-

tic integrals with respect to F :

Lemma A.4 Let (∆(s, x); s ∈ [0;T ], x ∈ R2) be a continuous random process such that

supp(∆(s, ·)) ⊂ D(s) for every s ∈ [0, T ]. For p ∈ [2,+∞[, set

I :=

∫
D(t)

dx

∣∣∣∣∫ t

0

‖S(t− s, x− ·)∆(s, ·)‖2
Hds

∣∣∣∣
p
2

.
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Then

(i) If f(r) = r−α, 0 < α < 2 and 2 ∨
(

8
5−2α

)
< p < +∞, then there exists some δ > −1

such that

I ≤ C

∫ t

0

(t− s)δ
(∫

D(s)

|∆(s, x)|pdx
)
ds. (A.21)

(ii) If (Hβ) holds for some β ∈]0, 2[, then for p ∈]8,+∞[, (A.21) holds for some δ > −1.

Proof: Let p1 ∈]1,+∞[ and p2 ∈]1, p[ be conjugate exponents, and let λ ∈]0, 1[. Hölder’s

inequality implies

I ≤
∫
D(t)

∣∣∣∣∫ t

0

I1(s, x)
1
p1 I2(s, x)

1
p2 ds

∣∣∣∣
p
2

dx , (A.22)

where

I1(s, x) =

∫ ∫
S(t− s, x− y)p1f(|x− y|)λp1S(t− s, x− z)p1dydz,

I2(s, x) =

∫
D(s)

∫
D(s)

|∆(s, y)|p2f(|y − z|)(1−λ)p2|∆(s, z)|p2dydz.

Let a := p
p2
∈]1,+∞[ and b ∈]1,+∞[ be such that 1

a
+ 1

b
−1 = 1− 1

a
. Hölder’s and Young’s

inequalities imply that for s ∈ [0, T ] and x ∈ K,

I2(s, x) ≤
(∫

D(s)

|∆(s, y)|ap2dy

) 1
a

(∫
D(s)

∣∣∣∣∫
D(s)

|f(|y − z|)(1−λ)p2|∆(s, z)|p2dz

∣∣∣∣ a
a−1

dy

)a−1
a

≤ ‖∆(s, ·)‖2p2

Lp(D(s))

∥∥f(| · |)(1−λ)p2
∥∥
Lb(K̄)

, (A.23)

where K̄ = {x− y : x, y ∈ D(T )} is a compact subset of R2 depending on T and K.

(i) If f(r) = r−α, the right hand side of (A.23) converges if and only if
∫

0+ r f(r)(1−λ)p2bdr <

+∞, i.e., α(1− λ)bp2 < 2. Furthermore, if 1 ≤ p1 < 2∧ (3− λp1α)∧ (4− 2λp1α), (A.16)

implies that

I1(s, x) ≤ C(t− s)4−2p1−λp1α. (A.24)
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Therefore, using (A.22)-(A.24) we deduce that if δ := 4
p1
− 2− λα > −1 and the previous

constraints on λ, p1 and p2 are satisfied, then (A.21) holds. The requirements on p2 and

λ are gathered in the following system:
2 < p2 < p < +∞ ,
λα < 2− 3

p2
,

λα < 3
2
− 2

p2
,

α + 4
(

1
p
− 1

p2

)
< λα < α .

These inequalities on λα ∈]0, α[ are compatible if and only if
2 < p2 < p < +∞ ,
4
p
< 2− α + 1

p2
4
p
< 3

2
− α + 2

p2
,

which in turn are compatible if and only if 2 ∨
(

8
5−2α

)
< p < +∞.

(ii) Suppose that (Hβ) holds for some β ∈]0, 2[. Let q = (1 − λ)bp2; if q = 1,∫
0+ rf(r)qdr < +∞. Furthermore, if 0 < q < 1, Hölder’s inequality applied with respect

to the measure r1−βdr implies that for every R > 0,

∫ R

0

r f(r)qdr ≤
(∫ R

0

r1−β f(r)dr

)q (∫ R

0

r1−β+ β
1−q dr

)1−q

< +∞ .

On the other hand, if λp1 ≤ 1, p1 < 2 ∧ (3− 2λp1) ∧ [4− 2λp1(2− β)] ∧ (5
2
− λp1), then

(A.17) implies that

I1(s, x) ≤ C(t− s)4−2p1−λp1(2−β). (A.25)

Therefore, using (A.22), (A.23) and (A.25), we see that if the previous requirements on

λ, p1, p2 and β are satisfied, then (A.21) holds if δ := 4
p1
− 2 − λ(2 − β) > −1. The

constraints on λ and p1 are summarized in the following system:

2 < p2 < p < +∞ ,
0 < λ < 1− 3

2 p2
,

λ > 1 + 2
(

1
p
− 1

p2

)
,

λ < 3
2(2−β)

− 2
2−β ·

1
p2
,

λ < 3
2
− 5

2 p2
.

35



Since for p2 > 2 one has 1− 3
2 p2

< 3
2
− 5

2 p2
, these inequalities are compatible if and only if

2 < p2 < p < +∞ ,
2
p
< 1

2p2
,

2
p
< 2β−1

2(2−β)
+ 2(1−β)

(2−β) p2
.

This system is equivalent to 2 < p2, 4p2 < p < +∞ and p > 4(2−β)p2

p2(2β−1)+4(1−β)
> 0 If

1
2
≤ β < 2, p2(2β − 1) + 4(1− β) > 0 always holds, while if 0 < β < 1

2
, this inequality is

equivalent with p2 <
4(1−β)
1−2β

(note that in this case 2 < 4(1−β)
1−2β

).

• If 0 < β ≤ 1, the map p2 7−→ 4(2−β)p2

p2(2β−1)+4(1−β)
is increasing and the system is

compatible (for p2 ∼ 2) if p > 8.

• If 1 ≤ β < 2, the same map is decreasing and (for p2 ∼ p
4

and p > 8)

the system is compatible if p > 8 and p > 4(2−β)p
p(2β−1)+16(1−β)

, that is p > 8 ∨(
4(3β−2)

2β−1

)
= 8.

This concludes the proof of the lemma. 2

Remark A.4: If f(r) = r−α with 0 < α ≤ 1
2
, (A.21) holds for p > 2, and if 1

2
< α < 2,

(A.21) holds for p > 8
5−2α

. Finally, sup
0≤α<2

8

5− 2α
= 8 gives the lower limit of p in case (ii).
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[10] A. Millet, M. Sanz-Solé A stochastic wave equation in two space dimensions: smooth-

ness of the law, Annals of Probab. 27 (1999), 803-844.

[11] C. Mueller Long-time existence for the wave equation with a noise term, Annals of

Probability 25 (1997), pp. 133- 151.

37



[12] S. Peszat The Cauchy problem for a nonlinear stochastic wave equation in any di-

mension, Preprint (1999).

[13] S. Peszat, J. Zabczyk Nonlinear stochastic wave and heat equations, Preprint (1998).

[14] D.W. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes, Springer Ver-

lag, 1979.

[15] J.B. Walsh An introduction to stochastic partial differential equations, Ecole d’été
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