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Abstract

We consider a class of 2d Navier-Stokes equations with external non-conservative
forces. We develop a probabilistic interpretation based on a vortex equation with
external integrable field. We relate the latter to a nonlinear process with random space-
time birth, providing a probabilistic description of the creation of vorticity. The initial
data and external field are only assumed to satisfy integrability properties. Initially, a
regularized version of the process is obtained, replacing the singular Biot and Savart
kernel by some Lipschitz continuous regularization. Then, we remove the regularization
parameter and deduce the existence, uniqueness and regularity of a mild solution of the
vortex equation with external field, and thus the existence of the nonlinear process.
We define interacting particle systems with space-time random births and propose a
stochastic numerical particle method for the vorticity and also for the velocity field. We
obtain either pathwise or weak convergence results, depending on the integrability of the
initial data and of the external field. We finally illustrate our results with simulations.

1 Introduction

The Navier-Stokes equation for an homogeneous and incompressible fluid in the whole plane
subject to an external force field f , is given by

∂u
∂t + (u · ∇)u = ν∆u−∇p + f ;

div u(t, x) = 0; u(t, x) → 0 as |x| → ∞.

(1)

Here, u denotes the velocity field, p is the pressure function and ν > 0 is the viscosity
(constant) coefficient.
In absence of the external force field, (or more generally, when f = ∇Ψ is a conservative
field), a probabilistic interpretation of (1) is known since the work of Marchioro and Pul-
virenti [15]. The probabilistic approach to (1) is based on the associated vortex equation,
i.e. the equation satisfied by the (scalar) vorticity field w := curlu, which is interpreted as
a generalized McKean-Vlasov equation associated with a nonlinear diffusion process. This
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process can also be obtained as the limit of interacting particle systems in mean field inter-
action, and this fact provides stochastic approximations of the vortex equation associated
with (1). Convergence on the path space of these particles (or equivalently, propagation of
chaos for the system) has been proved in more recent works of Méléard [16] and [17].

In this work, we will extend such approach to the Navier-Stokes equation with external
force field (1). We will permanently combine analytical and probabilistic arguments.
The non-conservative external force gives an additional field g = curlf in the vortex equa-
tion. More precisely, the vorticity field w = curl u satisfies the scalar equation

∂w
∂t + (K ∗ w · ∇)w = ν∆w + g;

where K(x) = 1
2π

(−x2,x1)
|x|2 is the so-called Biot-Savart kernel in R2.

The external field g is physically interpreted as creation of vorticity. In order to provide a
probabilistic description of this phenomenon, we relate this equation to a nonlinear process
with random birth in space and time, according to a law related to the initial vorticity w0

and the external field g. A similar idea is developed in the work of Jourdain and Méléard
[13] in the context of a vortex equation on a bounded domain with Neumann’s condition
on the boundary.
A minimal assumption for the probabilistic study of the vortex equation, is that w0 and
g(t, ·) are integrable functions for each t. Our first goal is to prove existence and uniqueness
both for the vortex equation and for the nonlinear process under this assumption. The main
difficulties in this study are the singularity of the kernel K and the lack of continuity of
the convolution operator K ∗ w for w ∈ L1.
Therefore, we will first consider a mollified setting, working with regularized versions of
the Biot-Savart kernel. We will adapt the classic McKean-Vlasov techniques to prove the
pathwise existence and uniqueness of a mollified nonlinear process. The family of its time-
marginal laws weighted by some function of the space-time initial data gives a solution of
the mollified vortex equation. By construction these solutions are in L1, uniformly on the
regularization parameter.
We construct a stochastic interacting particle system with space-time births and prove
propagation of chaos and its convergence to the mollified nonlinear process.
In order to remove the regularization parameter, we will assume in a first step that the initial
vorticity and external field belong to L1 ∩ Lp, for p > 4

3 . This choice is suggested by the
continuity properties of the Biot and Savart operator. To obtain uniform Lp estimates, we
introduce original techniques that take advantage of the volume preserving property of the
stochastic flow associated with the mollified nonlinear process. We deduce the existence of
a global mild solution of the vortex equation. By analytic techniques we prove uniqueness
and regularity of this solution, and then the pathwise existence and uniqueness of the
nonlinear process. Moreover, we obtain pathwise convergence for the particle system in a
strong norm, and deduce an approximation result for the velocity field u at an explicit rate.
In a second step, we extend our results to L1 initial condition and external field. The
analytical part of our study generalizes to the case g 6= 0 some compacity arguments of
Ben-Artzi [2] and Brezis [5] when g = 0. Hence, we obtain existence, uniqueness and
regularity of the mild solution of the vortex equation. We deduce existence and uniqueness
in law for the nonlinear process, by proving the convergence of some martingale problems,
and convergence in law of the particle approximations.
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The explosion of the solution at time 0 prevents us in this case from obtaining pathwise
results and a stronger convergence.
Our results improve the functional (L1∩L∞) assumption required in [15] and [16], and also
the smallness condition on the norm ‖w0‖1 partially needed in [17].
We finally illustrate our results with numerical simulations.

1.1 Notation

- C1,2 is the set of real valued functions on [0, T ]×R2 with continuous derivatives up to
the first order in t ∈ [0, T ] and up to the second order in x ∈ R. C1,2

b is the subspace
of bounded functions in C1,2 with bounded derivatives.

- D is the space of of infinitely differentiable functions on R2 having compact support.

- For all 1 ≤ p ≤ ∞ we denote by Lp the space Lp(R2) of real valued functions on R2.
By ‖ · ‖p we denote the corresponding norm and p∗ stands for the Hölder conjugate
of p. We write W i,p = W i,p(R2) for the Sobolev space of functions in Lp with partial
derivatives up to the i-th order in Lp.

- C and C(T ) are finite positive constants that may change from line to line.

The next two elementary results will be used throughout.

Lemma 1.1 Let ε, θ be strictly positive constants and β(θ, ε) =
∫ 1
0 (1− s)θ−1sε−1ds be the

Beta function of parameters θ and ε. Then, for all t > 0,∫ t

0
(t− s)θ−1sε−1ds = tθ+ε−1β(θ, ε).

The following is a version of Gronwall’s lemma proved for instance in [9].

Lemma 1.2 Let k : [0, T ] → R+ be a bounded nonnegative measurable function and suppose
that there are constants C,A ≥ 0 and θ > 0 such that, for all t ≤ T ,

k(t) ≤ A+ C

∫ t

0
(t− s)θ−1k(s) ds.

Then,
sup
t≤T

k(t) ≤ CTA,

where the constant CT does not depend on A.

2 The vortex equation with external force and its probabilis-
tic interpretation

The vortex equation associated with the Navier-Stokes equation with external force (1) is
the equation satisfied by w = curl u, that is

∂w
∂t + (u · ∇)w = ν∆w + g;

w0(x) = curl u(0, x)
(2)
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where u is the velocity field solution of (1) and

g = curl f . (3)

Thanks to divergence free property of u and the Biot-Savart law, we can write

u = K ∗ w (4)

where
K(x) =

1
2π

(−x2, x1)
|x|2

, x ∈ R2\{0}

is the so-called Biot-Savart kernel in R2.

We will fix for all the sequel an arbitrary finite time interval [0, T ].
In view of our probabilistic interpretation of Equation (2), it is natural and necessary
to assume that the functions w0 : R2 → R and g : R+ × R2 → R satisfy the minimal
integrability hypothesis:

• w0 ∈ L1(R2).

• g ∈ L1([0, T ]× R2).

We denote by ‖g‖1,T the L1-norm of g on [0, T ]× R2 :

‖g‖1,T =
∫ T

0

∫
R2

|g(s, x)|dx ds.

We are interested in weak solutions of (2) defined as follows.

Definition 2.1 A measurable function w : [0, T ]×R2 → R is a weak solution of the vortex
equation (2) with initial condition w0 and external field g on the interval [0, T ], if∫

[0,T ]×R2

|K ∗ wt(x)||wt(x)|dxdt <∞, (5)

and for every function φ ∈ C1,2
b ([0, T ]× R2) and t ≤ T ,∫

R2

φ(t, x)wt(x)dx =
∫

R2

φ(0, x)w0(x)dx+
∫ t

0

∫
R2

φ(s, x)gs(x)dx ds

+
∫ t

0

∫
R2

[
∂φ(s, x)
∂s

+ ν4φ(s, x) + (K ∗ ws)(x)∇φ(s, x)
]
ws(x)dx.

(6)

Even if our probabilistic approach naturally leads to this type of solution, for analytic
purpose we need to deal with mild solution of Equation (2). We denote by

Gνt (x) := (4πνt)−1e−|x|
2/4νt

the heat kernel in R2. The following are well known estimates.
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Lemma 2.2 Let m ∈ [1,∞] and l ≥ m. There exist constants c(m, l), c′(m, l) > 0 such
that for all f ∈ Lm

‖Gνt ∗ f‖l ≤ c(m, l)t
1
l
− 1

m ‖f‖m and ‖∇Gνt ∗ f‖l ≤ c′(m, l)t−
1
2
+ 1

l
− 1

m ‖f‖m.

Definition 2.3 A measurable function w : [0, T ]×R2 → R is called a mild solution of the
vortex equation with external field g if condition (5) holds and

wt(x) = Gνt ∗ w0(x) +
∫ t

0
Gνt−s ∗ gs(x) ds+

∫ t

0
∇Gνt−s ∗ [(K ∗ ws)ws] (x) ds (7)

for all t ∈ [0, T ].

Remark 2.4 A weak solution is always a mild solution. This is easily seen by taking for
each fixed t > 0 and ψ ∈ D in Equation (6) the function φt(s, x) := Gνt−s∗ψ(x) (which solves
on [0, t[×R2 the heat equation with final condition ψ). Using Fubini’s theorem (thanks to
(5)) yields (7). The converse is immediate.

2.1 The nonlinear process with random space-time birth

In the case g = 0, Equation (2) can be seen as a generalized McKean-Vlasov equation,
associated with a nonlinear stochastic process. When g 6= 0, an additional ”free” term
appears in the weak formulation of the equation (Definition 2.1). We interpret this term
as creation of vorticity, associating with Equation (2) a nonlinear process with random
space-time birth. An analogous approach has been developed in Jourdain and Méléard
[13]. In that work, a vortex equation on a bounded domain with Neumann’s condition on
the boundary is associated with a nonlinear process with space-time random birth located
at the boundary.
Let us define the probability measure P0(dt, dx) on [0, T ]× R2 by

P0(dt, dx) = δ0(dt)
|w0(x)|

‖w0‖1 + ‖g‖1,T
dx+

|gt(x)|
‖w0‖1 + ‖g‖1,T

dx dt, (8)

together with the scalar weight function

h(t, x) = 1{t=0}
w0(x)
|w0(x)|

(‖w0‖1 + ‖g‖1,T ) +
gt(x)
|gt(x)|

(‖w0‖1 + ‖g‖1,T )1{t>0} (9)

with the convention ”0
0 = 0” and 1 denoting the indicator function. Hence, h takes values

in {−(‖w0‖1 + ‖g‖1,T ), 0, ‖w0‖1 + ‖g‖1,T }.

Remark 2.5 For any measurable bounded function φ on [0, T ]× R2,∫
[0,T ]×R2

φ(t, x)h(t, x)P0(dx, dt) =
∫

R2

φ(0, x)w0(x)dx+
∫

[0,T ]×R2

φ(t, x)gt(x)dx dt

Let now (τ, (Xt)t∈[0,T ]) denote the canonical process on the space CT := [0, T ]×C([0, T ],R2).
With each probability measure Q on CT we associate the flow of signed measures (Q̃t)t∈[0,T ]

on R2, defined for all bounded measurable function f : R2 → R by

Q̃t(f) = EQ
(
f(Xt)h(τ,X0)1t≥τ

)
. (10)
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Clearly, for each t ∈ [0, T ] the total mass of Q̃t is bounded by ‖w0‖1 + ‖g‖1,T .
Notice furthermore that if Q◦(Xt)−1 has a density, say ρt, then so does Q̃t. We then denote
the density of Q̃t by

ρ̃t(x)

We always take versions of (t, x) 7→ ρt(x) and (t, x) 7→ ρ̃t(x) that are measurable in the
pair of variables (t, x), if such versions exist.

Definition 2.6 A probability measure P on CT is a solution to the nonlinear martingale
problem (MP) if

• P◦(τ,X0)−1 = P0 and P̃t has bi-measurable densities ρ̃t(x) for (t, x) ∈ [0, T ]× R2

• f(t,Xt)− f(τ,X0)−
∫ t
0

[
∂f
∂s (s,Xs) + ν4f(s,Xs) +K ∗ ρ̃s(Xs)∇f(s,Xs)

]
1s≥τds,

0 ≤ t ≤ T, is a continuous P -martingale for all f ∈ C1,2
b w.r.t. the filtration

Ft = σ(τ, (Xs), s ≤ t).

The link between this problem and Equation (2) is the following.

Lemma 2.7 Assume that the problem (MP) has a solution P which satisfies∫
[0,T ]×R2

|K ∗ ρ̃t(x)||ρ̃t(x)|dxdt <∞.

Then w := ρ̃ is a weak solution of the vortex equation with external force field (2).

Proof: Since the variable h(τ,X0)1{τ≤t} is measurable with respect to F0, the process

f(t,Xt)h(τ,X0)1{τ≤t} − f(τ,X0)h(τ,X0)1{τ≤t}

−
∫ t

0

[
∂f

∂s
(s,Xs) + ν4f(s,Xs)ds+K ∗ ρ̃s(Xs)∇f(s,Xs)

]
h(τ,X0)1{s≥τ}ds

is a P -martingale for all f ∈ C1,2
b w.r.t. (Ft). We take expectation and use Fubini’s theorem,

and we conclude by Remark 2.5 and the definition of ρ̃.

By a standard argument using the semi-martingale decomposition of the coordinate pro-
cesses Xi and their products XiXj , we obtain that for f ∈ C1,2

b the martingale part of
f(t,Xt) in (MP) is given by the stochastic integral

√
2ν
∫ t

0
∇f(s,Xs)1{s≥τ}dBs,

with respect to a Brownian motion B defined on some extension of the canonical space.
Consequently, on the random interval [0, τ ], the martingales in (MP) are null and Xt = X0.

Remark 2.8 It follows that the second condition in (MP) is equivalent to the fact that

f(t,Xt)− f(0, X0)−
∫ t

0

∂f

∂s
(s,Xs)ds−

∫ t

0
[ν4f(s,Xs) +K ∗ ρ̃s(Xs)∇f(s,Xs)]1{s≥τ}ds

(11)
is a continuous P -martingale with respect to (Ft) for all f ∈ C1,2

b .
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3 The mollified problem

In a first stage we deal with a regularized version of the kernel K. Let ϕ : R2 → R be a
bounded and smooth function with bounded derivatives, satisfying ‖ϕ‖1 = 1. For ε > 0 we
define ϕε(x) = 1

ε2
ϕ(xε ), and

Kε = K ∗ ϕε.

The function Kε is bounded and smooth, and has bounded derivatives. We denote by Mε

its sup-norm on R2 and by Lε a Lipschitz constant, that respectively behave like 1
ε2

and 1
ε3

when ε << 1. Notice that div Kε = (div K) ∗ ϕε = 0.
In this section, we fix the parameter ε, and we consider the mollified equation obtained
from Equation (2) by replacing K by Kε:

∂v
∂t + (Kε ∗ v · ∇)v = ν∆v + g. (12)

We will adapt the usual McKean-Vlasov approach to give a probabilistic interpretation to
(12) and construct some approximating stochastic particle system.

3.1 The nonlinear process.

Consider on some given probability space a 2-dimensional Brownian motion B and a R+×R2

valued random variable (τ,X0) independent of B with law P0.

Theorem 3.1 There is existence and uniqueness, trajectorial and in law, for the following
nonlinear stochastic differential equation in the sense of McKean

Xε
t = X0 +

√
2ν
∫ t

0
1s≥τdBs +

∫ t

0
Kε ∗ P̃ εs (Xε

s )1s≥τds, t > 0, (13)

under the conditions: law(τ,X0) = P0 and law(τ,Xε) = P ε.

Proof : The proof is easily adapted from Theorem 1.1 in [20]. Denote by dT the Kantorovich-
Wasserstein distance on CT

dT (Q1, Q2) := inf
{∫

(CT )2

[
sup
t∈[0,T ]

(|x(t)− y(t)| ∧ 1) + |α− β|
]
Π(dα, dx, dβ, dy) :

Π has marginal laws Q1 and Q2

}
,

and by C0
T the closed subspace C0

T = {Q ∈ CT : Q◦(τ,X0)−1 = P0}. Define a mapping
Θ : C0

T → C0
T associating with Q the law Θ(Q) of the unique solution of

XQ
t = X0 +

√
2ν
∫ t

0
1s≥τdBs +

∫ t

0
Kε ∗ Q̃s(XQ

s )1s≥τds.

By trajectorial considerations, one can show that for each t ≤ T ,

dt(Θ(Q1),Θ(Q2)) ≤ C(T )
∫ t

0
ds(Q1, Q2)ds

(with dt(Q1, Q2) the distance between the projections of Q1 and Q2 to Ct). We deduce the
existence of a unique fixed point for Θ and hence a unique solution in law. The trajectorial
statement then follows from the Lipschitz property of Kε (see [20] for details).
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It will be convenient to introduce the stochastic flow associated with the nonlinear process
(13), that is, the three parameter process

ξεs,t(x) = x+
√

2ν(Bt −Bs) +
∫ t

s
Kε ∗ P̃ εr (ξεs,r(x))dr. (14)

The function (s, x) 7→ Kε ∗ P̃ εs (x) is continuous, and Lipschitz continuous in x uniformly in
time, as well as all its spatial derivatives. This implies that there is a continuous version
(s, t, x) 7→ ξεs,t(x) such that x 7→ ξεs,t(x) is continuously differentiable for all (s, t) (cf. [14]).
We denote by

Gε(s, x; t, y), (s, x, t, y) ∈ (R+ × R2)2, s < t

the density of ξεs,t(x), which is a continuous function of (s, x, t, y) (see [10]).
Since Xε

t = X0 for all t ≤ τ , we have that

Xε
t = ξετ,t(X0)1{t≥τ} +X01{t<τ}.

Hence, conditioning with respect to (τ,X0), we obtain for bounded functions f that

E(f(Xε
t )) =E(f(Xε

t )1{t≥τ}) + E(f(Xε
t )1{t<τ})

=E
[
f(ξετ,t(Xτ ))1{t≥τ}

]
+ E

[
f(X0)1{t<τ}

]
=
∫ t

0

∫
(R2)2

f(y)Gε(s, x; y, t)dyP0(ds, dx) +
∫ T

t

∫
R2

f(x)P0(ds, dx),

=
∫

R2

f(x)w̄0(x)dx+
∫ t

0

∫
R2

[∫
R2

f(y)Gε(s, x; t, y)dy
]
ḡs(x)dx ds

+
∫ T

t

∫
R2

f(x)ḡs(x)dxds,

where we have introduced the notation

w̄0(x) =
|w0(x)|

‖w0‖1 + ‖g‖1,T
and ḡs(x) =

|gs(x)|
‖w0‖1 + ‖g‖1,T

.

By Fubini’s theorem, we deduce that for each t ∈]0, T ], Xε
t has a bi-measurable density

(t, y) 7→ ρεt (y).

Similarly, we have∫
R2

f(x)P̃ εt (dx) =E[f(ξετ,t(X0))h(τ,X0)1{τ≤t}] + E[f(X0)h(τ,X0)1{τ>t}]

=
∫

R2

f(x)w0(x)dx+
∫ t

0

∫
R2

[∫
R2

f(y)Gε(s, x; t, y)dy
]
gs(x)dx ds

+
∫ T

t

∫
R2

f(x)gs(x)dxds

and then, P̃ εt (dy) has a bi-measurable density family, that we denote by

(t, y) 7→ ρ̃εt (y).
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Remark 3.2 By construction, we obtain

sup
ε>0

sup
t∈[0,T ]

‖ρ̃εt‖1 ≤ ‖w0‖1 + ‖g‖1,T (15)

We deduce the following result about Equation (12).

Corollary 3.3 The function ρ̃ε is the unique weak solution of Equation (12) in the space
L∞([0, T ], L1).

Proof: We write Itô’s formula for φ(t,Xε
t ) and proceed as in Lemma 2.7 (boundedness of

Kε provides us now an analogous integrability condition as required therein.) We obtain
that ρ̃εt ∈ L∞([0, T ], L1) is a solution of the weak McKean-Vlasov type equation∫

R2

φ(t, x)ρ̃εt (x)dx =
∫

R2

φ(0, x)w0(x)dx+
∫ t

0

∫
R2

φ(s, x)gs(x)dx ds

+
∫ t

0

∫
R2

[
∂φ(s, x)
∂s

+ ν4φ(s, x) +Kε ∗ ρ̃εs(x)∇φ(s, x)
]
ρ̃εs(x)dxds

(16)

for all φ ∈ C1,2
b ([0, T ]× R2).

Let us now prove uniqueness. Using boundedness of Kε and proceeding as in Remark 2.4,
we check that ρ̃ε is a solution in L∞([0, T ], L1) of the mollified mild equation

ρ̃εt (x) = Gνt ∗ w0(x) +
∫ t

0
Gνt−s ∗ gs(x) ds+

∫ t

0
∇Gνt−s ∗ [(Kε ∗ ρ̃εs)ρ̃εs] (x) ds. (17)

If v is another solution of (17), we obtain, thanks to Lemma 2.2 with l = ∞ and m = 1
that

‖ρ̃εt − vt‖1 ≤ C(ε)
∫ t

0
(t− s)−

1
2 ‖ρ̃εs − vs‖1ds

and conclude with Lemma 1.2.

3.2 Stochastic particle approximations

We now define an interacting particle system which is naturally associated with the non-
linear process studied above. The system takes into account the random space-time births.
Its pathwise existence and uniqueness can be proved by adapting standard arguments.

Definition 3.4 Consider a sequence (Bi)i∈N of independent Brownian motions on R2 and
a sequence of independent variables (τ i, X i

0)i∈N with values in [0, T ]×R2 distributed accord-
ing to P0, and independent of the Brownian motions. For a fixed ε > 0, for each n ∈ N∗,
let us consider the interacting processes defined for 1 ≤ i ≤ n by

Xin,ε
t = Xi

0 +
√

2ν
∫ t

0
1{s≥τ i}dB

i
s +

∫ t

0
1{s≥τ i}Kε ∗ µ̃n,εs (Xin,ε

s )ds (18)

where

µ̃n,εs =
1
n

n∑
j=1

h(τ j , Xj
0)1{s≥τj}δXjn,ε

s
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is the weighted empirical measure of the system at time s and

Kε ∗ µ̃n,εs (z) =
1
n

n∑
j=1

h(τ j , Xj
0)1{s≥τj}Kε(z −Xjn,ε

s ).

Observe that particles either have birth at time 0 or at a random time, and evolve as soon
as they are born as diffusive particles that interact following a mean field depending on
the parameter ε. We introduce a coupling between these interacting processes and some
independent copies of the limiting process defined in (13), as follows:

Definition 3.5 For i ≥ 1, we define X̄i,ε by

X̄i,ε
t = Xi

0 +
√

2ν
∫ t

0
1{s≥τ i}dB

i
s +

∫ t

0
1{s≥τ i}Kε ∗ ρ̃εs(X̄i,ε

s )ds. (19)

We have the following estimates for each ε > 0.

Proposition 3.6 There exist positive constants C1, C2 such that for all n ∈ N, 1 ≤ i ≤ n
and ε ∈]0, 1[,

E(sup
t≤T

|Xin,ε
t − X̄i,ε

t |) ≤ C1ε√
n

exp(C2(‖w0‖1 + ‖g‖1,T )(ε−2)T ).

(20)

Proof. The proof is an adaptation of the proof of Proposition 2.2 in [11]. We have

sup
s≤t

|Xin,ε
s − X̄i,ε

s | ≤
∫ t

0

1
n

n∑
j=1

‖h‖∞ Lε
(
|Xin,ε

s − X̄i,ε
s |+ |Xjn,ε

s − X̄j,ε
s |
)
ds

+
∫ t

0

∣∣∣∣∣∣ 1n
n∑
j=1

h(τ j , Xj
0)Kε(X̄i,ε

s − X̄j,ε
s )−Kε ∗ ρ̃εs(X̄i,ε

s )

∣∣∣∣∣∣ ds.
Since the sequence (τ i, X in,ε, X̄i,ε)1≤i≤n is exchangeable,

E
[
sup
s≤t

|Xin,ε
s − X̄i,ε

s |
]
≤ 2‖h‖∞ Lε

∫ t

0
E
[
sup
u≤s

|Xin,ε
u − X̄i,ε

u |
]
ds

+
∫ t

0

E
 1
n

n∑
j=1

h(τ j , Xj
0)Kε(X̄i,ε

s − X̄j,ε
s )−Kε ∗ ρ̃εs(X̄i,ε

s )

21/2

ds

The expectation in the last term above is equal to 1
n2 times a double sum of terms

E

[(
h(τ j , Xj

0)Kε(X̄i,ε
s − X̄j,ε

s )−Kε ∗ ρ̃εs(X̄i,ε
s )
)(

h(τk, Xk
0 )Kε(X̄i,ε

s − X̄k,ε
s )−Kε ∗ ρ̃εs(X̄i,ε

s )
)]
,(21)

k, j = 1 . . . n. Observe that for each x ∈ R2 the random variable h(τ j , Xj
0)Kε(x − X̄j,ε

s ) −
Kε ∗ ρ̃εs(x) is centered, from definition of ρ̃εs. By independence of (τm, X̄m,ε

s )1≤m≤n, we
deduce that if j 6= k,

E

[
h(τ j , Xj

0)Kε(X̄i,ε
s − X̄j,ε

s )−Kε ∗ ρ̃εs(X̄i,ε
s )
∣∣∣∣(τ i, X̄i,ε

s ), (τk, X̄k,ε
s )
]

= 0,
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and consequently, the expression (21) vanishes. Otherwise, it is bounded by 4
nM

2
ε ‖h‖2

∞.
Thus, we obtain that

E

[
sup
s≤t

|Xin,ε
s − X̄i,ε

s |
]
≤ 2‖h‖∞Lε

∫ t

0
E

[
sup
s≤t

|Xin,ε
s − X̄i,ε

s |
]
ds+

2tMε‖h‖∞√
n

.

Remembering that ‖h‖∞ = ‖w0‖1 + ‖g‖1,T , we conclude with Gronwall’s lemma that

E(sup
t≤T

|Xin,ε
t − X̄i,ε

t |) ≤ CMε

Lε
√
n

exp(2(‖w0‖1 + ‖g‖1,T )LεT ).

Remark 3.7 Since the function h is bounded, we can easily deduce from the previous the-
orem that for all continuous bounded f : R2 → R and ε > 0,

E

∣∣∣∣〈µ̃n,εt , f〉 −
∫

R2

f(x)ρ̃εt (x)dx
∣∣∣∣→ 0

when n→∞.

3.3 Density estimates

Constructing the nonlinear process gave us existence for each ε > 0 of a weak solution of
(12). This probabilistic approach has naturally provided uniform (in ε) L1 estimates for the
solution. In order to make ε → 0, and because of the bad behavior of K in the space L1,
it will be necessary to additionally obtain uniform Lp estimates for some p strictly greater
than 1. The stochastic flow will be the fundamental tool for this purpose.
The diffusion coefficient in (14) being constant, the following “stochastic version” of Liou-
ville’s theorem can be proven in a similar way as the standard one (e.g. [8] Ch. 1).

Lemma 3.8 Let Jξεs,t = |det(∇xξ
ε
s,t)| be the Jacobian of the function ξεs,t : R2 → R2. Then

Jξεs,t(x) = 1 +
∫ t

s
div
[
Kε ∗ P̃ εr (ξεs,r(x))

]
Jξεs,rdr.

Since div Kε ∗ P̃ εr (ξεs,r(x)) = 0 we conclude that for all (s, t, x),

Jξεs,t(x) = 1.

Lemma 3.9 Let ρε and ρ̃ε be respectively the family of densities of X under P ε and the
family of weighted densities associated with P ε through (10). Let p ∈ [1,∞] and assume
that w0 ∈ Lp and g ∈ L1([0, T ], Lp). Then, we have

i) ‖ρ̃εt‖p ≤ ‖w0‖p +
∫ t

0
‖gs‖p ds

ii) ‖ρεt‖p ≤
‖w0‖p +

∫ T
0 ‖gs‖p ds

‖w0‖1 +
∫ T
0 ‖gs‖1 ds

for all ε > 0 and t ∈ [0, T ].
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Proof: Consider a fixed function ψ ∈ D and t > 0. By the Feynman-Kac formula, the
function φt(s, x) := E(ψ(ξεs,t(x))) is the unique solution of the Cauchy problem

∂φ(s,x)
∂s + ν4φ(s, x) +Kε ∗ ρ̃εs(x)∇φ(s, x) = 0 for all (s, x) ∈ [0, t[×R2

φ(t, x) = ψ.

Replacing φt in the weak equation (16) and using Fubini’s theorem, we obtain∫
R2

ψ(x)ρ̃εt (x)dx =
∫

R2

φt(0, x)w0(x)dx+
∫ t

0

∫
R2

φt(s, x)gs(x)dx ds

=E
(∫

R2

[
ψ(ξε0,t(x))w0(x)

]
dx

)
+
∫ t

0
E

(∫
R2

[
ψ(ξεs,t(x))gs(x)

]
dx

)
ds

and so∣∣ ∫
R2

ψ(x)ρ̃εt (x)dx
∣∣ ≤ E

[
‖ψ(ξε0,t(· ))‖p∗

]
‖w0‖p +

∫ t

0
E
[
‖ψ(ξεs,t(· ))‖p∗

]
‖gs‖pds.

Thanks to Lemma 3.8, we conclude that∣∣ ∫
R2

ψ(x)ρ̃εt (x)dx
∣∣ ≤ ‖ψ‖p∗

(
‖w0‖p +

∫ t

0
‖gs‖pds

)
.

which proves i). To prove ii), define a sub-probability density ρ̂εt by
∫

R2 ψ(x)ρ̂εt (x)dx =
E(ψ(Xε

t )1{t≥τ}). Writing Itô’s formula for f(t,Xε
t ), multiplying by 1{t≥τ} and taking

expectations, we check that∫
R2

φt(x)ρ̂εt (x)dx =
∫

R2

φ(0, x)w̄0(x)dx+
∫ t

0

∫
R2

φ(s, x)ḡs(x)dx ds

+
∫ t

0

∫
R2

[
∂φ(s, x)
∂s

+ ν4φ(s, x) +Kε ∗ ρ̃εs(x)∇φ(s, x)
]
ρ̂εs(x)dxds.

We deduce as previously that∣∣ ∫
R2

ψ(x)ρ̂εt (x)dx
∣∣ ≤ ‖ψ‖p∗

‖w0‖1 + ‖g‖1,T

(
‖w0‖p +

∫ t

0
‖gs‖pds

)
.

The desired estimate for ρεt follows from here, since E(ψ(Xε
t )1{t<τ}) = E(ψ(X0)1{t<τ}) =∫ T

t

∫
R2 ψ(x) |gs(x)|

‖w0‖1+‖g‖1,T
dx ds.

In [6], Busnello also relied on the stochastic flow to obtain uniform in time estimates for
some solutions to the vortex equation. However, her argument needs regularity of the initial
condition and does not consider external force fields.

4 L1 ∩ Lp data: existence, uniqueness and pathwise approxi-
mation

Our goal now is to make ε go to 0. The singular kernel K has a bad behavior in the space
L1. However, it satisfies the following fundamental continuity properties.
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Lemma 4.1 Let p ∈ (1, 2) and 1
q = 1

p −
1
2 . For each f ∈ Lp and x ∈ R2 the integral

K ∗ f(x) is absolutely convergent. Furthermore, there is a constant Cp,q > 0 such that

i)
‖K ∗ f‖q ≤ Cp,q‖f‖p for all ∈ f ∈ Lp. (22)

ii)
‖K ∗ f‖W 1,q ≤ Cp,q‖f‖W 1,p for all ∈ f ∈W 1,p (23)

Proof: The absolute convergence of K ∗ f(x), and statement i) follow from the analogous
results for the Riesz transform

f ∈ Lp 7→
∫

R2

f(y)
|x− y|

dy ∈ Lq(dx), (24)

(cf. Theorem 1, Ch. 5 in Stein [19]). To prove ii), by using the latter and a density
argument, it is enough to check that the operator K∗ commutes with derivatives when
acting on D. But this follows by taking derivatives under the integral sign by dominated
convergence.

Remark 4.2 Lemma 4.1 with the same constants applies to each mollified kernel Kε.

We now introduce the adequate spaces to work in. For measurable w : [0, T ]×R2 → R and
real numbers p ∈ [1,∞] and r ≥ p we introduce the norms

• |||w|||0,p,T = sup
0≤t≤T

‖wt‖p

• |||w|||0,r,(T ;p) = sup
0≤t≤T

{
t

1
p
− 1

r ‖wt‖r
}
.

and we denote the associated Banach spaces respectively by

F0,p,T and F0,r,(T ;p).

For analytical purposes, we will treat in a unified way the mollified and non-mollified
equations. We write K0 = K, and for each ε ≥ 0, we define the bilinear operator Bε on
measurable functions v, w : [0, T ]× R2 → R, by

Bε(v, w)(t, x) =
∫ t

0

∫
R2

∇Gνt−s(x− y) ·Kε ∗ vs(y)ws(y)dy ds (25)

Accordingly, we also write B = B0.
Finally, we denote by W0 the function

W0(t, x) = Gνt ∗ w0(x) +
∫ t

0
Gνt−s ∗ gs(x)ds.

Lemma 4.3 i) Let p ∈ [1,∞] and assume w0 ∈ Lp and g ∈ F0,p,T . Then, we have

W0 ∈ F0,r,(T ;p) for all r ≥ p.

13



ii) For each r ≥ 4
3 , v, w ∈ F0,r,T , and each t ≤ T , we have

sup
ε≥0

‖Kε ∗ v(t)w(t)‖ 2r
4−r

≤ C‖v(t)‖r‖w(t)‖r. (26)

iii) If 4
3 ≤ p < 2, p ≤ r < 2 and 2r

4−r ≤ r′ < r
2−r , then Bε : (F0,r,(T ;p))2 → F0,r′,(T ;p) is well

defined for each ε ≥ 0, and

sup
ε≥0

|||Bε(v, w)|||0,r′,(T ;p) ≤ C(T )|||v|||0,r,(T ;p)|||w|||0,r,(T ;p)

for all v, w ∈ F0,r,(T ;p).

iv) If 4
3 ≤ p < 2, w0 ∈ Lp and g ∈ F0,p,T , we have for all r ∈ [p, 2p

2−p)

sup
ε≥0

|||ρ̃ε|||0,r,(T ;p) <∞.

Proof : Part i) follows from Lemma 2.2, and the estimate∥∥∥∥∫ t

0
Gνt−s ∗ gs ds

∥∥∥∥
r

≤ C(p, r)t1+
1
r
− 1

p

(
sup
t∈[0,T ]

‖gt‖p

)
(27)

for some constant C(p, r) > 0 since 1/p < 1/r + 1.

ii) Notice that 1 ≤ 2r
4−r . Equation (26) is immediately obtained from Lemma 4.1, Remark

4.2 and Hölder’s inequality.

iii) By (26), noticing that 1 ≤ 2r
4−r ≤ r′ and by Lemma 2.2 and Lemma 4.1, we have

‖Bε(v, w)t‖r′ ≤C
∫ t

0
(t− s)

1
r′−

2
r ‖vs‖r‖ws‖r ds

≤C|||v|||0,r,(T ;p)|||w|||0,r,(T ;p)

∫ t

0
(t− s)

1
r′−

2
r s

2
r
− 2

pds

=Ct1+ 1
r′−

2
p |||v|||0,r,(T ;p)|||w|||0,r,(T ;p)

(28)

with constants that do not depend on ε ≥ 0. In the last step we have used the fact that
1
r −

1
p > −1

2 because r < 2 < 2p
2−p . The statement follows.

iv) By Lemma 3.9, we have
sup
ε≥0

|||ρ̃ε|||0,p,T <∞

Observe that p
2−p ≥ 2. We define p1 := 4p

2+p ∈ (p, 2) and apply iii) to r = p and r′ = p1

which yields supε≥0 |||ρ̃ε|||0,p1,(T ;p) <∞, considering Equation (17) and i). We now apply iii)
to r = p1 and some r′ ∈ [ 2p1

4−p1 ,
p1

2−p1 ) = [p, 2p
2−p) and conclude in a similar way.

Throughout the sequel, we make following type of assumption on the initial condition and
the external field:
(Hp):

• w0 ∈ Lp(R2) and
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• g ∈ F0,p,T .

Remark 4.4 In view of the continuity property of the Biot-Savart operator, and of part
iii) of the previous lemma, we will always consider

p = 1 or p ∈ [
4
3
, 2).

4.1 Convergence of the mollified solutions for L1 ∩ Lp data

For technical reasons, we will make a particular choice of approximating kernels Kε(x) =
K ∗ ϕε(x). We will assume that ϕε(x) = 1

ε2
ϕ( .ε), with ϕ a cutoff function with radial

symmetry. The following function has been given by Raviart [18] in a general context of
approximations, and proposed by Bossy [1] for a numerical study of the vortex algorithm:

ϕ(x) =
2(2− r2)
π(1 + r2)4

, r = |x|.

It is proven in [17] that in this case, we have

Kε(x) =
4ε4 + (r2 + 3ε2)r2

2π(r2 + ε2)3
(−x2, x1). (29)

Lemma 4.5 For each l ∈ [1, 2) we have

‖Kε −K‖l ≤ Cε
2−l

l

where the constant C depends only on l.

Proof. We have

Kε(x)−K(x) =
ε4

2π
r2 − ε2

(r2 + ε2)3
1
r2

(−x2, x1).

Then, for l ≥ 1,

‖Kε −K‖ll ≤ ε4l

(2π)l−1

∫ +∞

0

(r2 − ε2)l

(r2 + ε2)3lrl−1
dr

≤ ε2−l
1

(2π)l−1

∫ +∞

0

(α2 − 1)l

(α2 + 1)3lαl−1
dα

≤ Cε2−l, for l < 2.

Proposition 4.6 Assume that (Hp) holds, with p ∈ [43 , 2). Then, for any l ∈ (1, 2) and
ε > ε′ > 0 we have

sup
t≤T

‖ρ̃εt − ρ̃ε
′
t ‖p ≤ Clε

2−l
l

for some positive constant Cl. We deduce that the sequence ρ̃ε converges, when ε tends to
0, to some function w ∈ F0,p,T solving the mild vortex equation (7), and

sup
t≤T

‖ρ̃εt − wt‖p ≤ Clε
2−l

l . (30)
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Proof: By Lemma 4.5, we get for 1 < l < 2 that

‖Kε −Kε′‖l ≤ Cε
2−l

l .

In view of (17), Lemma 2.2 and Lemma 4.3, we have, for t ≤ T ,

‖ρ̃εt − ρ̃ε
′
t ‖p ≤

∫ t

0
‖∇Gνt−s ∗ [(Kε ∗ ρ̃εs)ρ̃εs − (Kε′ ∗ ρ̃ε

′
s )ρ̃ε

′
s ‖p ds

≤ C

∫ t

0
(t− s)−

1
p ‖(Kε ∗ ρ̃εs)ρ̃εs − (Kε′ ∗ ρ̃ε

′
s )ρ̃ε

′
s ‖ 2p

4−p
ds

≤ C

∫ t

0
(t− s)−

1
p (‖(Kε ∗ ρ̃εs)ρ̃εs − (Kε′ ∗ ρ̃εs)ρ̃εs‖ 2p

4−p

+‖(Kε′ ∗ ρ̃εs)ρ̃εs − (Kε′ ∗ ρ̃ε
′
s )ρ̃εs‖ 2p

4−p
+ ‖(Kε′ ∗ ρ̃ε

′
s )(ρ̃εs − ρ̃ε

′
s )‖ 2p

4−p
) ds

≤ C|||ρ̃ε|||0,p,T ‖Kε′ −Kε‖l|||ρ̃ε|||0,r,(T ;p)

∫ t

0
(t− s)−

1
p s

1
r
− 1

pds

+C
(
|||ρ̃ε|||0,p,T + |||ρ̃ε′ |||0,p,T

)∫ t

0
(t− s)−

1
p ‖ρ̃εs − ρ̃ε

′
s ‖p ds, (31)

with r ∈ (p, 2p
2−p) given by the relation 1

p −
1
2 = 1

r + 1
l − 1. The last inequality follows from

Young’s inequality for the first term and from (26) for the last two terms. Notice that
1
r −

1
p + 1 > 0, and so Lemmas 4.3 iv) and Lemma 4.5 finally imply that

‖ρ̃εt − ρ̃ε
′
t ‖p ≤ C sup

ε
|||ρ̃ε|||0,p,T

(
ε

2−l
l sup

ε
|||ρ̃ε|||0,r,(T ;p) + C

∫ t

0
(t− s)−

1
p ‖ρ̃εs − ρ̃ε

′
s ‖p ds

)
(32)

which together with Lemma 1.2 implies that

sup
t≤T

‖ρ̃εt − ρ̃ε
′
t ‖p ≤ Cε

2−l
l .

The sequence is hence Cauchy in F0,p,T . By similar arguments it is immediate to see that
its limit w ∈ F0,p,T is a solution of (7) .

We finally obtain the following existence and uniqueness result:

Theorem 4.7 Assume (H1) and (Hp) with p ∈ [43 , 2). Then, the mild vortex equation with
external force field (7) has a unique solution w in the space F0,p,T ∩ F0,1,T . The solution
satisfies

‖w(t)‖p ≤ ‖w0‖p +
∫ t

0
‖gs‖pds. (33)

Proof: Existence of a solution w ∈ F0,p,T has been proved in Proposition 4.6. The upper-
bound (33) follows from the convergence statement therein and from Lemma 3.9.
Let us check that w ∈ F0,1,T . Consider the sequence defined by γ0 = 1, γn+1 = 4γn

2+γn
,

which is strictly increasing, converges to 2 and satisfies γn = 2γn+1

4−γn+1
. Take N ∈ N such

that γN ≤ p < γN+1. We have γN ∈ [ 2p
4−p , p], and so from Lemma 4.3 iii) and the fact that

W0 ∈ F0,γN ,T we deduce that w ∈ F0,γN ,T . Since furthermore W0 ∈ F0,γN−1,T , we obtain
that w ∈ F0,γN−1,T . We iterate this argument N − 1 times and conclude that w ∈ F0,1,T .
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Finally, if w,w′ ∈ F0,p,T are two solutions of (17), as in the proof of Lemma 4.3, ii) (with
p = r = r′) we get

‖wt − w′t‖p ≤ C
(
|||w|||0,p,T + |||w′|||0,p,T

) ∫ t

0
(t− s)−

1
p ‖ws − w′s‖pds

We conclude uniqueness by Lemma 1.2.

In the sequel, the family of equations

wεt (x) = Gνt ∗ w0(x) +
∫ t

0
Gνt−s ∗ gs(x) ds+

∫ t

0
∇Gνt−s ∗ [(Kε ∗ wεs)wεs] (x) ds, (34)

with ε ≥ 0, will be refereed as the mollified mild equations. Notice that with this notation,
Equation (34) is Equation (7) if ε = 0 and Equation (17) if ε > 0.

Remark 4.8 With similar arguments as in Theorem 4.7, we can also prove uniqueness for
each of the mollified mild equations (34) in the space F0,p,T , p ∈ [43 , 2). We deduce that
under the assumptions of Theorem 4.7, for each ε ≥ 0 Equation (34) has a unique solution
wε ∈ F0,p,T ∩ F0,1,T , given by wε = ρ̃ε if ε > 0, or by w0 = w.

4.2 Regularity estimates

We have so far proved existence and uniqueness of a solution w of the vortex equation
in F0,p,T ∩ F0,1,T . But we still need minimal regularity properties of w and K ∗ w (such
as boundedness of the latter) in order to construct a solution of the nonlinear martingale
problem.
Therefore, we now prove some uniform (in ε) regularity properties for functions ρ̃ε. These
results will imply strong existence and uniqueness for the limiting process and moreover,
under assumptions (H1) and (Hp), pathwise convergence of the mollified processes when
ε tends to 0.

For T > 0 and r ≥ p we introduce some additional norms

• |||v|||1,r,(T ;p) = sup
0≤t≤T

{
t

1
p
− 1

r ‖vt‖r + t
1
2
+( 1

p
− 1

r
)‖∇vt‖r

}
.

• |||v|||1,p,T = |||v|||1,p,(T ;p) = sup
0≤t≤T

{
‖vt‖p + t

1
2 ‖∇vt‖p

}
and the associated Banach spaces

F1,r,(T ;p) and F1,p,T .

Lemma 4.9 i) Assume (Hp) with 4
3 ≤ p < 2. Then we have

W0 ∈ F1,r,(T ;p) for all r ∈ [p,
2p

2− p
).

ii) If 4
3 ≤ p < 2, p ≤ r < 2 and 2r

4−r ≤ r′ < r
2−r , then Bε : (F1,r,(T ;p))2 → F1,r′,(T ;p) is well

defined for each ε ≥ 0 and

sup
ε≥0

|||Bε(v, u)|||1,r′,(T ;p) ≤ C|||v|||1,r,(T ;p)|||u|||1,r,(T ;p).
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Proof: i) For p ∈ [1, 2) the function t 7→ t
− 1

2
+ 1

r
− 1

p is integrable in 0 if and only if r < 2p
2−p .

Taking the gradient of Gνt−s ∗ gs under the time integral and using Lemma 2.2 we obtain∥∥∥∥∇(∫ t

0
Gνt−s ∗ gs ds

)∥∥∥∥
r

≤ C ′(p, r)t
1
2
+ 1

r
− 1

p

(
sup
t∈[0,T ]

‖gt‖p

)
(35)

for some constant C ′(p, r) > 0, which implies that W0 ∈ F1,r,(T ;p).
ii) In view of Remark 4.2, it is enough to check the continuity properties for B. If v, u ∈
F1,r,(T ;p) the function (K ∗ vt)ut belongs to W 1, 2r

4−r , and so by integration by parts,

B(v, u)(t, x) =
∫ t

0

∫
R2

Gνt−s(x− y)(K ∗ vs)(y) · ∇us(y)dy ds

(recall that div K ∗ u = 0). Next, for any ψ ∈ D it holds that∫ t

0

∫
(R2)2

Gνt−s(x− y)|ψ(x)||K ∗ vs(y)||∇us(y)|dx dy ds

≤ C‖ψ‖(r′)∗ |||v|||0,r,(T ;p)|||u|||1,r,(T ;p)

∫ t

0
(t− s)

1
r′−

2
r
+ 1

2 s
2
r
− 2

p
− 1

2ds <∞,

where (r′)∗ is the conjugate of r′. Thus, by using Fubini’s Theorem and integration by
parts,∫

R2

B(v, u)t(x)
∂ψ

∂xi
(x)dx = −

∫ t

0

∫
(R2)2

∂Gνt−s
∂xi

(x− y)ψ(x)(K ∗ vs)(y)∇us(y)dx dy ds,

(i = 1, 2) from where we deduce that

‖∇B(v, u)t‖r′ ≤ C|||v|||0,r,(T ;p)|||u|||1,r,(T ;p)

∫ t

0
(t− s)

1
r′−

2
r s

2
r
− 2

p
− 1

2ds

= C|||v|||0,r,(T ;p)|||u|||1,r,(T ;p)t
1
2
+ 1

r′−
2
p

(we use here the fact that 2
r −

2
p −

1
2 > −1). From this estimate and (28) we conclude ii).

Remark 4.10 By the previous lemma, and since

2p
4− p

≤ p <
p

2− p
,

Equation (34) in the space F1,p,T , with 4
3 ≤ p < 2, is equivalent to the abstract equation

wε = W0 + Bε(wε, wε). (36)

To obtain the required additional regularity, we will prove a local existence result of regular
mild solutions. We need the following lemma (see e.g. Cannone [7], Ch.1).
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Lemma 4.11 Let (F, ||| · |||) be a Banach space, Λ ∈ R a positive constant and B : F 2 → F
a continuous bilinear operator such that

|||B(x1,x2)||| ≤ Λ|||x1||| |||x2|||

for all x1,x2 ∈ F . If y ∈ F is such that 4Λ|||y||| < 1, there exists a unique solution x ∈ F of

x = y + B(x,x)

in the centered ball of radius Rγ := 1−
√

1−4Λ|||y|||
2Λ ≤ 2|||y|||.

Proposition 4.12 Let p ∈ [43 , 2). There is a constant λp > 0 independent of ε ≥ 0 such
that for all θ > 0 and w0 ∈ Lp, g ∈ F0,p,θ satisfying

θ
1− 1

p (‖w0‖p + θ|||g|||0,p,θ) < λp,

Equations (34) with ε ≥ 0, have a unique solution in F1,p,θ such that |||wε|||1,p,θ ≤ 2|||W0|||1,p,θ.

Proof: From Lemma 4.9 ii) (with r = r′ = p′ = p), the operators Bε : (F1,p,θ)2 → F1,p,θ

are continuous with norm bounded by θ1− 1
p times a constant C(p) > 0 not depending on θ

or ε ≥ 0. Furthermore, from the proofs of Lemma 2.2 and Lemmas 4.3 i) and 4.9 i) there
is C̃(p) > 0 such that

|||W0|||1,p,θ ≤ C̃(p) (‖w0‖p + θ|||g|||0,p,θ) .
Hence, by the previous lemma, a solution w ∈ F1,p,θ to the abstract equation (36) exists as
soon as

4C(p)θ1− 1
p (‖w0‖p + θ|||g|||0,p,θ) C̃(p) < 1.

Theorem 4.13 Assume (H1) and (Hp) with p ∈ [43 , 2) and let wε ∈ F0,p,T ∩F0,1,T , ε ≥ 0,
be the solution of (34).

i) We have
sup
ε≥0

|||wε|||1,p,T <∞.

ii) For each r ∈ [p, 2p
2−p)

sup
ε≥0

|||wε|||1,r,(T ;p) <∞.

Proof: i) We follow a similar argument as in Lemma 4.4 in [9] to deal with the bad
behavior of wε at time 0. Firstly, we prove that for each r ∈ [0, T ], the shifted function
(s, x) → wεr+s(x) coincides on some small time interval [0, θ0] with a function in F1,p,θ0 .
By the semigroup property of Gνt and the estimates of Lemma 2.2, it is checked that

wεr+t(x) = Gνt ∗wεr(x)+
∫ t

0
Gνt−s ∗gs+r(x) ds+

∫ t

0
∇Gνt−s ∗

[
(Kε ∗ wεr+s)wεr+s

]
(x) ds, (37)

for all t ∈ (0, T − r]. We write W ε
(r)(t, x) := Gνt ∗wεr(x) +

∫ t
0 G

ν
t−s ∗ gs+r(x) ds. Then, as in

the proof of Proposition 4.12 and with the same constant C̃(p), we have

|||W ε
(r)|||1,p,θ ≤ C̃(p) (‖wεr‖p + θ|||g·+r|||0,p,θ)

≤ C̃(p) (‖w0‖p + 2T |||g|||0,p,T )
(38)
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for all θ ∈ [0, T − r], the last inequality due to Lemma 3.9.
Let λp > 0 be the constant given in Proposition 4.12, and take θ0 ∈ [0, T ] such that

θ
1− 1

p

0 (‖w0‖p + 2T |||g|||0,p,T ) < λp.

Then, for each r ∈ [0, T ] such that θ0 ≤ T − r, we have

θ
1− 1

p

0 (‖wεr‖p + θ0|||g·+r|||0,p,θ0) ≤ θ
1− 1

p

0 (‖w0‖p + 2T |||g|||0,p,T ) < λp,

and consequently, by Proposition 4.12, each equation (37) has a solution, say vε(r), in the
space F1,p,θ0 . Since uniqueness holds for (37) in the space F0,p,θ0∧(T−r) for each r, we have
wεr+·(·) = vε(r) ∈ F1,p,θ0∧(T−r) and

|||wεr+·(·)|||1,p,θ0 ≤ 2|||W ε
(r)|||1,p,θ0 , (39)

also by Proposition 4.12. This clearly implies that wεt ∈W 1,p for strictly positive t.
Notice now that, by choosing rk := k θ02 , k ∈ {0 . . . , [2Tθ0 ]}, we get wεrk+t = wε

rk−1+
θ0
2

+t
for

t ∈ [0, θ02 ] and k ∈ {1 . . . , [2Tθ0 ]}. Consequently, for such t and k we have

(rk + t)
1
2 ‖∇wεrk+t‖p ≤ θ

− 1
2

0 (rk + t)
1
2 (t+

θ0
2

)
1
2 ‖∇wε

(rk−1)+t+
θ0
2

‖p

≤ C

(
T

θ0

) 1
2

|||W(rk−1)|||1,p,θ0 by (39),

≤ C

(
T

θ0

) 1
2

(‖w0‖p + 2T |||g|||0,p,T ) ,

the last inequality by (38). This and (39) with r = 0 yield the desired upper bound for wε.
Finally, using Lemma 4.9, the proof of ii) is done in a similar way as in Lemma 4.3 iv).

Corollary 4.14 Denote by Cα the space of Hölder continuous functions R2 → R2 of index
α ∈ (0, 1). Under the assumptions of Theorem 4.13, we have

i)
sup
ε≥0

sup
t∈[0,T ]

{
t

1
2

(
‖Kε ∗ wεt ‖∞ + ‖Kε ∗ wεt ‖C2− 2

p

)}
<∞ ;

ii) for all r ∈ (2, 2p
2−p),

sup
ε≥0

sup
t∈[0,T ]

{
t

1
2
− 1

r
+ 1

p

(
‖∇Kε ∗ wεt ‖∞ + ‖∇Kε ∗ wεt ‖C1− 2

r

)}
<∞.

Proof: Recall that for each m ∈ (2,∞], the Sobolev space W 1,m(R2) is continuously
embedded into L∞(R2) ∩ C1− 2

m (see e.g. [4]). We obtain part i) using the equi-continuity

of the family of operators {Kε : W 1,p → W
1, 2p

2−p

2 }ε≥0 for p ∈ (1, 2) , the fact that the wε’s
are uniformly bounded in F1,p,T , and the refereed embedding result for m = q.
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To prove ii) we use the following fact (see Bertozzi and Majda [3], p.76 for a proof): each
distributional derivative of the velocity field K ∗ w is obtained by applying some singular
integral operator on w .
As a consequence, for each i, j ∈ {1, 2}, the mapping f 7→ ∂

∂xi
Kj ∗ f defines a continuous

operator Lr → Lr for all r ∈ (1,∞). There exists moreover a homogeneous function
mi,j : R2 → R of degree 0 such that for f ∈ L2, the following relation on Fourier transforms
holds

F
(
∂

∂xi
Kj ∗ f

)
(ξ) = F(mi,j)F(f)(ξ),

with F(mi,j) a bounded function (see [19] Ch. 1 for all these facts). This implies that

∂

∂xk

(
∂

∂xi
Kj ∗ f

)
=

∂

∂xi

(
Kj ∗

∂f

∂xk

)
, k = 1, 2

for all f ∈W 1,2, and then for all f ∈W 1,r and all r ∈ (1,∞) by density and continuity.
By the previous commutation relation and continuity of ∂

∂xi
Kj∗ in Lr, the operators

∂
∂xi
Kj∗ : W 1,r → W 1,r are continuous. Moreover, it is not hard to check that the Fourier

transform of ∂
∂xi

(Kε)j equals that of ∂
∂xi
Kj times some function in L∞ with norm smaller

than 1. It follows that the operators ∂
∂xi

(Kε)j∗ : W 1,r →W 1,r are equi-continuous in ε ≥ 0.
We conclude ii) using the latter, the uniform estimate for wε in F1,r,(T ;p) when r ∈ (2, 2p

2−p)
and the above mentioned embedding with m = r.

4.3 Pathwise convergence of the mollified processes

Definition 4.15 We denote by Pp,T the space of probability measures on CT = [0, T ] ×
C([0, T ],R2) such that for each t ∈ [0, T ], the signed measure P̃t has a density ρ̃t with
respect to the Lebesgue measure and ρ̃ ∈ F0,p,T ∩ F0,1,T .

Theorem 4.16 Assume that (H1) and (Hp) hold with p ∈ [43 , 2). Consider a R2-Brownian
motion B and a random variable (τ,X0) with values in [0, T ]×R2 and distributed according
to P0, independent of the Brownian motion.

a) There exists in the class Pp,T a unique solution P to the nonlinear martingale problem
(MP). The corresponding function ρ̃ is equal to the unique solution w of the mild
equation (7) in the space F0,p,T ∩ F0,1,T .

b) There is a unique pathwise solution ((τ,X), P ) of the nonlinear stochastic differential
equation (E):

i) The law P of (τ,X) belongs to Pp,T and P̃t(dx) = ρ̃t(x)dx

ii) Xt = X0 +
√

2ν
∫ t

0
1{s≥τ}dBs +

∫ t

0
1{s≥τ}K ∗ ρ̃s(Xs)ds . (40)

c) For each ε > 0, let Xε be the mollified nonlinear processes constructed in the same
probability space as B and (τ,X0). Then, Xε converges in L1

T := {Y,E(supt≤T |Yt|) <
+∞} to X, with moreover

E

(
sup
t≤T

|Xε
t −Xt|

)
≤ C(p, r)ε2(

1
p
− 1

r
)

for each r ∈ (p, 2p
2−p).
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Proof: Part a) easily follows from b). Indeed, the fact that a solution of (E) is a solution
of the nonlinear martingale problem (MP) is easily verified by writing Itô’s formula for
f(t,Xt) and using Remark 2.8. With Lemma 2.7 we deduce that ρ̃ is a solution of the
weak equation. To check that it is also a mild solution, observe that ρ̃ belongs to F0, 4

3
,T by

interpolation. Therefore, K ∗ ρ̃ ∈ F0,4,T and∫ T

0

∫
R2

|K ∗ ρ̃s(x)||ρ̃s(x)|dx ds <∞ (41)

by Hölder’s inequality and Lemma 4.1. We conclude by Remark 2.4 that ρ̃ is a mild solution
in F0,p,T .

For the rest of the proof, we proceed in several steps.
Pathwise uniqueness for (E).
Consider, given B and (τ,X0), two pathwise solutions (τ, Z1) and (τ, Z2) of (E). We
respectively denote by P 1 and P 2 the laws of (τ, Z1) and (τ, Z2) which belong to Pp,T . We
deduce as previously that ρ̃1 = ρ̃2 = w. Hence (τ, Z1) and (τ, Z2) are both solutions of a
stochastic differential equation (Ew) defined like (E), but with the known drift coefficient
K ∗ ws instead of K ∗ ρ̃1

s or K ∗ ρ̃2
s in (40).

Then, using the Lipschitz property of K ∗ w obtained in Corollary 4.14, we get for all
r ∈ (2, 2p

2−p) and t ≤ T that

E(sup
u≤t

|Z1
u − Z2

u|) = E

(
sup
u≤t

∣∣∣∣ ∫ u

0
(K ∗ ws(Z1

s )−K ∗ ws(Z2
s ))ds

∣∣∣∣)
≤

∫ t

0
s

1
r
− 1

p
− 1

2E(sup
u≤s

|Z1
u − Z2

u|)ds. (42)

By Gronwall’s lemma, we deduce that E(supt≤T |Z1
t − Z2

t |) = 0 i.e. the processes Z1 and
Z2 are indistinguishable.

Pathwise convergence
We will now prove that the sequence (Xε) is Cauchy in L1

T , and that it converges as ε
tends to 0 to a process X, such that (τ,X) is solution of the nonlinear stochastic differential
equation (E).
We denote as usual by q the number defined by 1

q = 1
p −

1
2 . We choose r ∈ (p, 2p

2−p) and
l ∈ (1, 2) such that 1

p −
1
2 = 1

q = 1
r + 1

l − 1. We firstly prove the following estimate: for each
ε > ε′ ≥ 0,

E

(∫ T

0

∣∣∣∣Kε ∗ ρ̃εs(Xε
s )−Kε′ ∗ ρ̃ε

′
s (Xε

s )
∣∣∣∣ds) ≤ Cε

2−l
l . (43)

Write 1
q∗ = 1− 1

q and observe that q∗ ∈ [1, p] so that by Lemma 3.9,

sup
ε>0

|||ρε|||0,q∗,T <∞.
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Therefore, the left hand side of (43) writes∫ T

0
E|Kε ∗ ρ̃εs(Xε

s )−Kε′ ∗ ρ̃ε
′
s (Xε

s )|ds =
∫ T

0

∫
R2

|Kε ∗ ρ̃εs(x)−Kε′ ∗ ρ̃ε
′
s (x)|ρεs(x)dxds

≤
∫ T

0
‖Kε ∗ ρ̃εs −Kε′ ∗ ρ̃ε

′
s ‖q‖ρεs‖q∗ds

≤ C

∫ T

0
‖Kε ∗ ρ̃εs −Kε′ ∗ ρ̃ε

′
s ‖q ds

≤ C

∫ T

0
‖Kε ∗ ρ̃εt −Kε′ ∗ ρ̃εt‖q + ‖Kε′ ∗ ρ̃εt −Kε′ ∗ ρ̃ε

′
t ‖qds

By Young’s inequality, Lemma 4.5, and Lemma 4.3 iv) the first term in the last integral is
bounded by

‖Kε −Kε′‖l‖ρ̃εt‖r ≤ Cε
2−l

l ‖ρ̃εt‖r ≤ Cε
2−l

l t
1
r
− 1

p .

On the other hand, by Lemma 4.1 and Proposition 4.6 we get that the second term is
bounded by Cε

2−l
l . From these estimates, (43) follows since 1

r −
1
p + 1 > 0.

Now, for u ≤ T , we have

E

(
sup
v≤u

|Xε
v −Xε′

v |
)
≤ E

(∫ u

0
|Kε ∗ ρ̃εs(Xε

s )−Kε′ ∗ ρ̃ε
′
s (Xε′

s )|ds
)

≤
∫ u

0

(
E|Kε ∗ ρ̃εs(Xε

s )−Kε′ ∗ ρ̃ε
′
s (Xε

s )|+ E|Kε′ ∗ ρ̃ε
′
s (Xε

s )−Kε′ ∗ ρ̃ε
′
s (Xε′

s )|
)
ds

≤ Cε
2−l

l +
∫ u

0
s

1
r
− 1

p
− 1

2E(sup
v≤s

|Xε
v −Xε′

v |)ds (44)

by (43) and Corollary 4.14. We conclude by Gronwall’s Lemma (since 1
r −

1
p −

1
2 > −1) that

E

(
sup
t≤T

|Xε
t −Xε′

t |
)
≤ Cε

2−l
l . (45)

The sequence (Xε) is hence Cauchy in the space L1
T := {Y : E(supt∈[0,T ] |Yt|) < +∞}.

Thus, it converges in L1
T at speed C(p, r)ε2(

1
p
− 1

r
), to some process Xw. The final step is

Identification of the limit as a solution of (E)
Taking ε′ = 0 in the previous estimates easily leads to the fact that (τ,Xw) is solution of
the stochastic differential equation

Xw
t = X0 +

√
2ν
∫ t

0
1{s≥τ}dBs +

∫ t

0
1{s≥τ}K ∗ ws(Xw

s )ds (46)

Denote by Pw the law of Xw. To finish the proof we just need to verify that Xw is a
solution of the nonlinear stochastic differential equation (E). This amounts to check that
each of the signed measures P̃wt has a density which is equal to w. We have, for each f ∈ D
and t ∈ [0, T ] that∣∣∣∣∫

R2

f(x)ρ̃εt (x)dx− P̃wt (f)
∣∣∣∣ = ∣∣E(f(Xε

t )h(τ,X0)1{τ≤t})− E(f(Xw
t )h(τ,X0)1{τ≤t})

∣∣
≤ C‖∇f‖∞E|Xε

t −Xw
t | → 0 when ε→ 0

and since
∫

R2 f(x)ρ̃εt (x)dx →
∫

R2 f(x)wt(x)dx from Proposition 4.6, this concludes the
proof.
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4.4 The stochastic vortex method

From the results in the previous sections we readily deduce

Corollary 4.17 Let T > 0 and assume that (H1) and (Hp) hold with p ∈ [43 , 2). Consider
a sequence εn → 0 in such way that

C1εn√
n

exp(C2(‖w0‖1 + ‖g‖1,T )(ε−2
n )T ) → 0

when n→∞, where C1 and C2 are the positive constants given in Proposition 3.6.
With the notation (3.4), we define for all n ∈ N and i = 1 . . . n the system of particles

Zin := Xin,εn

and consider on the same probability space the sequence of i.i.d processes (X̄i)i∈N, with X̄i

the unique strong solution of

i) the law P of (τ i, X̄i) belongs to Pp,T and P̃t(dx) = ρ̃t(x)dx

ii) X̄i
t = Xi

0 +
√

2ν
∫ t

0
1{s≥τ i}dB

i
s +

∫ t

0
1{s≥τ i}K ∗ ρ̃s(X̄i

s)ds . (47)

Then, for all k ∈ N and any r ∈ (p, 2p
2−p), we have

E

(
sup
t∈[0,T ]

k∑
i=1

|Zint − X̄i
t |

)
≤ kCε

2( 1
p
− 1

r
)

n + k
C1εn√
n

exp(C2(‖w0‖1 + ‖g‖1,T )(ε−2
n )T ) → 0

(the constant C depending on p, r and T ).

Corollary 4.18 Consider α ∈]0, 1
2 [ and the sequence (εn) given by

εn :=
(
C2‖h‖∞T
α lnn

) 1
2

,

with a constant C2 > 0 as in Corollary 4.17. Consider moreover the weighted empirical
process

µ̃n,εn
s =

1
n

n∑
j=1

h(τ j , Xj
0)1{s≥τj}δZjn

s

and the approximate velocity field

Kεn ∗ µ̃n,εn
s (z) =

1
n

n∑
j=1

h(τ j , Xj
0)1{s≥τj}Kεn(z − Zjns ).

Then, under the assumptions of Theorem 4.16, for all l ∈ (1, 2) we have

sup
x∈R2

E

(
sup
t∈[0,T ]

t
1
l |Kεn ∗ µ̃

n,εn
t (x)− u(t, x)|

)
≤ C(l, α, T )

(
lnn

n
1
2
−α

+
1

(α lnn)
2−l
2l

)
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Proof: Firstly we prove that for all l ∈ (1, 2), for some constant C(T ) depending on l and
T it holds that for p ∈ [4/3, 2),

sup
t≤T

t
1
2 ‖wεt − wt‖W 1,p ≤ C(T )ε

2−l
l . (48)

From Lemma 4.9 ii), for ε ≥ 0 the function ∇wε satisfies

∂wεt
∂xi

(x) =
∂

∂xi
Gνt ∗ w0(x) +

∂

∂xi

∫ t

0
Gνt−s ∗ gs(x)ds

+
∫ t

0

∫
R2

∂Gνt−s
∂xi

(x− y)(Kε ∗ wεs)(y) · ∇wεs(y)dy ds,
(49)

since divKε = 0. Proceeding as in Proposition 4.6, we deduce for r ∈ (p, 2p
2−p) given by

1
p −

1
2 = 1

r + 1
l − 1 that

‖∇wεt −∇wt‖p ≤ C

∫ t

0
(t− s)−

1
p (‖(Kε ∗ wεs)∇wεs − (K ∗ wεs)∇wεs‖ 2p

4−p

+‖(K ∗ wεs)∇wεs − (K ∗ ws)∇wεs‖ 2p
4−p

+ ‖(K ∗ ws)(∇wεs −∇ws‖ 2p
4−p

) ds

≤ C|||wε|||0,p,T ‖K −Kε‖l|||wε|||1,r,(T ;p)

∫ t

0
(t− s)−

1
p s

1
r
− 1

p
− 1

2ds

+C|||wε|||1,p,T
∫ t

0
(t− s)−

1
p s−

1
2 ‖wεs − ws‖p ds

+C|||w|||0,p,T
∫ t

0
(t− s)−

1
p ‖∇wεs −∇ws‖p ds. (50)

Notice that 1
r −

1
p + 1

2 > 0. With help of Lemma 1.1, Lemma 4.5 and Proposition 4.6 (since
ρ̃ε = wε), we deduce for all θ ≤ T and t ≤ θ that

t
1
2 ‖∇wεt −∇wt‖p ≤ Cε

2−l
l t

− 2
p
+ 1

r
+1 + Cε

2−l
l t

1− 1
p + t

1− 1
pC

{
sup
s≤θ

s
1
2 ‖∇wεs −∇ws‖p

}
,

where all powers of t are non negative. It follows that{
sup
s≤θ

s
1
2 ‖∇wεs −∇ws‖p

}
≤ C(T )ε

2−l
l + Cθ

1− 1
p

{
sup
s≤θ

s
1
2 ‖∇wεs −∇ws‖p

}
,

from where sups≤θ0 s
1
2 ‖∇wεs −∇ws‖p ≤ C(T )ε

2−l
l for θ0 > 0 small enough.

By similar steps as before, starting from the equations satisfied by wε·+θ0 and w·+θ0 , and not-
ing that these functions and their gradients are bounded in F0,p,T−θ0 and F0,r,(T ;p) uniformly
in ε ≥ 0, we obtain now

‖∇wεθ0+t −∇wθ0+t‖p ≤ Cε
2−l

l + Cε
2−l

l

∫ t

0
(t− s)−

1
p s

1
r
− 1

pds

+C
∫ t

0
(t− s)−

1
p ‖wεθ0+s − wθ0+s‖p ds

+C
∫ t

0
(t− s)−

1
p ‖∇wεθ0+s −∇wθ0+s‖p ds. (51)
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Using Proposition 4.6 and Lemma 1.2 we deduce that

sup
t≤T−θ0

‖∇wεθ0+t −∇wθ0+t‖p ≤ C(T )ε
2−l

l

From the previous estimates and Proposition 4.6 we deduce that

|||wε − w|||1,p,T ≤ Cε
2−l

l ,

from where (48) follows. Next, we have

|Kεn ∗ µ̃
n,εn
t (x)− u(t, x)| ≤

∣∣∣∣Kεn ∗ µ̃
n,εn
t (x)− 1

n

n∑
i=1

Kεn(X̄i,εn
t − x)h(τ i, X i

0)1{s≥τ i}

∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

Kεn(X̄i,εn
t − x)h(τ i, X i

0)1{s≥τj} −Kεn ∗ wεn
t (x)

∣∣∣∣∣
+ |Kεn ∗ wεn

t (x)−K ∗ wt(x)|
(52)

Let Lεn and Mεn respectively be a Lipschitz constant for Kεn and an upper bound for its
sup-norm. Recall that there exists some constant C such that for n large enough, Mεn ≤ C

ε2n

and Lεn ≤ C
ε3n

. By our choice of (εn), and thanks to Proposition 3.6, the expectation of the
first term can be bounded by

LεnC1
εn√
n

exp(C2‖h‖∞(ε−2
n )T ) ≤ C

nα√
nε2n

≤ C
α lnn

‖h‖∞Tn
1
2
−α
,

where ‖h‖∞ = ‖w0‖1 +‖g‖1,T . On the other hand, independence of the processes (τ i, X iεn)
implies that the expectation of the second term on the r.h.s is bounded above by

1√
n

2Mεn‖h‖∞ ≤ C
α lnn

Tn
1
2

.

For the last term, notice that by similar arguments as in the proof Corollary 4.14,

|Kεn ∗ wεn
t (x)−K ∗ wt(x)| ≤C‖Kεn ∗ wεn

t −Kεn ∗ wt‖
W

1,
2p

2−p
+ C‖Kεn ∗ wt −K ∗ wt‖

W
1,

2p
2−p

≤C‖wεn
t − wt‖W 1,p + ‖Kεn −K‖l‖wt‖W 1,r

≤Cε
2−l

l
n t−

1
2 + Cε

2−l
l

n t
1
r
− 1

p
− 1

2 |||w|||1,r,(T ;p).

where l and r are chosen as before. Since 1
r −

1
p −

1
2 = 1

l , we conclude that

sup
x∈R2

E

(
sup
t∈[0,T ]

t
1
l |Kεn ∗ µ̃

n,εn
t (x)− u(t, x)|

)
≤C

(
lnn

n
1
2
−α

+ ε
2−l

l
n

)

≤C(l, α, T )

(
lnn

n
1
2
−α

+
1

(α lnn)
2−l
2l

)
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5 Extension to L1 initial condition and force field

In this section, we shall extend the previous results to the case when w0 and g(t) belong
only to L1. The bad behavior in L1-norm of the Biot-Savart operator and its derivative
prevents us from working with solutions that are only L1 functions. We introduce the
adequate spaces for embedding the mild vortex equation with L1 data.

5.1 Analytical framework and results

For p ∈ [1,∞] and a measurable function v : R2 × [0, T ] → R, we define the norms

• |||v|||]0,p,T = sup
0≤t≤T

{
t
1− 1

p ‖vt‖p
}

• |||v|||]1,p,T = sup
0≤t≤T

{
t
1− 1

p ‖vt‖p + t
3
2
− 1

p ‖∇vt‖p
}

and write respectively F ]0,p,T and F ]1,p,T for the associated Banach spaces.

Remark 5.1 i) If (H1) holds, then by Lemma 2.2 we have Gνt ∗w0 ∈ F0,1,T ∩F ]1,p,T for

all p, and (t, x) 7→
∫ t
0 G

ν
t−s ∗ g(s, x)ds belongs to F0,1,T ∩ F ]1,p,T for p < 2.

ii) Proceeding as in Lemma 4.3, one can check for 4
3 ≤ p < 2 and 2p

4−p ≤ p′ < p
2−p that

sup
ε≥0

|||Bε(v, u)|||]0,p′,T ≤ C|||v|||]0,p,T |||u|||
]
0,p,T

for all v, u ∈ F ]0,p,T and for some constant C > 0. Moreover, the norm of Bε :

(F ]0,p,T )2 → F ]0,p′,T does not depend on T .

We shall prove below existence of a solution in F0,1,T ∩ F ]0,p,T for p ∈ [43 , 2) and arbitrary
T > 0, by an approximation argument by mean of F0,1,T ∩F0,p,T solutions. We follow ideas
of Ben-Artzi [2] who has studied the vortex equation with L1 initial condition but without
external field. The following two lemmas will be crucial.

Lemma 5.2 Let Γ ⊆ L1(R2) be a pre-compact set and ΓT ⊆ F0,1,T a bounded set. Then,
for each p ∈ (1, 2) there is an increasing function θ 7→ δ(θ, p,Γ,ΓT ), going to 0 with θ such
that

sup
ψ∈Γ,φ∈ΓT

|||Gν· ∗ ψ +
∫ ·

0
Gν·−s ∗ φ(s)ds|||]0,p,θ ≤ δ(θ, p,Γ,ΓT ).

Proof: Since Γ is pre-compact and Lp ∩ L1 is dense in L1, for each ε > 0 there is a finite
set Γε ⊆ Lp ∩ L1 such that the L1-balls of radius ε and centered in Γε cover Γ. Hence, for
each ψ ∈ Γ there exists some ψε ∈ Γε such that

‖Gνt ∗ ψ‖p ≤‖Gνt ∗ (ψ − ψε)‖p + ‖Gνt ∗ ψε‖p

≤C(p)t
1
p
−1‖ψ − ψε‖1 + ‖ψε‖p
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by Young’s inequality and the Lp estimate for Gνt . Writing M(ε) = sup
ψ̄∈Γε

‖ψ̄‖p, we have

sup
ψ∈Γ

|||Gν· ∗ ψ|||
]
0,p,θ ≤ Cε+ θ

1− 1
pM(ε),

and so the l.h.s term goes to 0 with θ. Also by Young’s inequality we have ‖Gνt−s ∗φ(s)‖p ≤
supφ∈ΓT

|||φ|||0,1,T (t− s)
1
p
−1, from which we obtain the following estimate:

sup
φ∈ΓT

|||
∫ ·

0
Gν·−s ∗ φ(s)ds|||]0,p,θ ≤ C(ΓT )θ.

The function of θ defined by

δ(θ, p,Γ,ΓT ) = sup
θ′≤θ

{
sup
ψ∈Γ

|||Gν· ∗ ψ|||
]
0,p,θ′ + sup

φ∈ΓT

|||
∫ ·

0
Gν·−s ∗ φ(s)ds|||]0,p,θ′

}
has the required properties.

Lemma 5.3 Let Γ ⊆ L1 and ΓT ⊆ F0,1,T respectively be a pre-compact set and a bounded
set, and assume that moreover there is p ∈ [43 , 2) such that Γ ⊆ Lp(R2) and ΓT ⊆ F0,p,T .
For each ε ≥ 0, each initial condition ψ ∈ Γ and each external field φ ∈ ΓT , let wε,ψ,φ be
the unique solution in F0,1,T ∩ F0,p,T of the associated mollified mild equation (34).
Then, there exists T0 > 0 such that for all θ ≤ T0,

sup
ε≥0

sup
ψ∈Γ,φ∈ΓT

|||wε,ψ,φ|||]0,p,θ ≤ 2δ(θ, p,Γ,ΓT ).

Proof: Consider t ≤ θ ≤ T and proceed as in Lemma 4.3 iii), with r = r′ = p to get

‖Bε(wε,ψ,φ, wε,ψ,φ)t‖p ≤C
∫ t

0
(t− s)−

1
p ‖wε,ψ,φs ‖2

p ds

≤C(|||wε,ψ,φ|||]0,p,θ)
2

∫ t

0
(t− s)−

1
p s

2
p
−2
ds

=Cpt
1
p
−1(|||wε,ψ,φ|||]0,p,θ)

2,by Lemma 1.1.

(53)

Consider the real function fθ(s) := Cps
2 − s + δ(θ, p,Γ,ΓT ). By inequalities (53), Lemma

5.2 and the definition of wε,ψ,φ, we have for any θ ≤ T that fθ(|||wε,ψ,φ|||0,p,θ) ≥ 0. Moreover

0 ≤ fθ′(|||wε,ψ,φ|||0,p,θ′) ≤ fθ(|||wε,ψ,φ|||0,p,θ′) for all θ′ ≤ θ ≤ T (54)

since δ(·, p,Γ,ΓT ) is increasing.
Let T0 be such that δ(T0, p,Γ,ΓT ) < 1

4Cp
and θ ∈ (0, T0] . Then, δ(θ, p,Γ,ΓT ) < 1

4Cp
and

fθ has two positive real roots, say 0 < s1(θ) < s2(θ), and it is strictly negative in between.
Notice that from the fact that wε,ψ,φ ∈ F0,p,T , the function θ′ 7→ |||wε,ψ,φ|||]0,p,θ′ is continuous

and goes to 0 when θ′ → 0. Hence, from (54) we must have |||wε,ψ,φ|||]0,p,θ′ ≤ s1(θ) for all
θ′ ≤ θ. In particular,

|||wε,ψ,φ|||]0,p,θ ≤ s1(θ) =
1−

√
1− 4Cpδ(θ, p,Γ,ΓT )

2Cp
≤ 2δ(θ,Γ,ΓT ).

Following arguments of Ben-Artzi [2] and Brezis [5], we deduce uniqueness for L1 data w0

and g, with help of the previous lemmas, and under an additional continuity assumption.
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Proposition 5.4 Let w0 and g satisfy assumption (H1). Then, for each p ∈ [43 , 2) and
ε ≥ 0, equation (34) has at most one solution in the space C([0, T ], L1) ∩ C(]0, T ], Lp).

Proof: We prove it for ε = 0, the case ε > 0 being done identically. Let w ∈ C([0, T ], L1)∩
C(]0, T ], Lp) be a mild solution. Recall that, by definition,∫

[0,T ]×R2

|(K ∗ ws)(x)||ws(x)|dx ds <∞.

Then, the shifted function wr+·(·) ∈ C([0, T − r], L1) ∩ C([0, T − r], Lp) solves the mild
vortex equation with initial condition wr and external field gr+·(·). Since w ∈ C([0, T ], L1),
the set

Γ := {wr}r∈[0,T
2

] ⊆ L1

is pre-compact. On the other hand,

ΓT/2 := {gr+·(·) : [0, T/2]× R2 → R}r∈[0,T/2]

is bounded in F0,1,T
2
. By Lemma 5.3, there is an increasing function that we denote by δ(θ)

for short, which does not depend on r ∈ [0, T/2], goes to 0 with θ, and satisfies

t
1− 1

p ‖wr+t‖p ≤ δ(θ)

for small enough θ and all t ∈ (0, θ]. Letting r → 0, we deduce that

sup
t∈[0,θ]

t
1− 1

p ‖wt‖p ≤ δ(θ).

Let w′ be a second solution and define δ′(θ) analogously. Proceeding as in Lemma 5.3, we
deduce that

|||w − w′|||]0,p,θ ≤ C(δ(θ) + δ′(θ))|||w − w′|||]0,p,θ

and so |||w − w′|||]0,p,θ = 0 for small enough θ > 0. Hence, w(θ) and w′(θ) solve the mild
equation in F0,p,T−θ with same data w(θ) and g(θ+ ·). We conclude from Theorem 4.7 that
w = w′ in [0, T ].

In view of the previous result, and in order to have a complete (existence and uniqueness)
statement for the mild equation with L1 data, we will slightly strengthen hypothesis (H1),
assuming

(H′
1):

• w0 ∈ L1(R2) and

• g ∈ C([0, T ], L1(R2)).

Next lemma will allow us to construct mild solutions with the required continuity property.

Lemma 5.5 Assume (H′
1) and (Hp) with p ∈ [43 , 2). Then, for each ε ≥ 0 the unique

solution wε ∈ F0,1,T ∩ F0,p,T of the mild equation (34) belongs to C([0, T ], Lp ∩ L1)
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Proof: First notice that if 4
3 ≤ p < 2 and 2p

4−p ≤ p′ < p
2−p , we have for any ε ≥ 0 that

‖Bε(v, u)t − Bε(v, u)t′‖p′ ≤C (|||v|||0,p,T + |||u|||0,p,T )
∫ t∧t′

0
s

1
p′−

2
p

[
‖ut−s − ut′−s‖p

+ ‖vt−s − vt′−s‖p
]
ds

+ C (|||v|||0,p,T + |||u|||0,p,T )2 [(t ∨ t′)1+
1
p′−

2
p − (t ∧ t′)1+

1
p′−

2
p ],

and the right hand side goes to 0 when t → t′ by dominated convergence for v, w ∈
C([0, T ], Lp). This and Lemma 4.3 imply the continuity of the operators

Bε : (C([0, T ], Lp))2 → (C([0, T ], Lp
′
)).

On the other hand, by Young’s inequality we have for r ∈ [1, p]∥∥∥∥∥
∫ t

0
Gνt−s ∗ gsds−

∫ t′

0
Gνt′−s ∗ gs ds

∥∥∥∥∥
r

≤
∫ t∧t′

0
s

1
r
−1‖gt−s − gt′−s‖1 ds

+
∫ t∨t′

t∧t′
s

1
r
−1‖g(t∨t′)−s‖1 ds,

and so from continuity of s 7→ gs ∈ L1 we deduce that W0 ∈ C([0, T ], Lr).
Proceeding as in Section 3.4 (using Lemma 4.11 and Proposition 4.12) we deduce a local
existence statement for (34) in the space C([0, T ], Lp). From uniqueness in F0,p,T for the
equation satisfied by wε(θ + ·) we conclude that wε ∈ C([0, T ], Lp).
Finally, repeating the arguments of Theorem 4.7 in the spaces C([0, T ], Lr) yields that
wε ∈ C([0, T ], L1).

Now we can prove

Theorem 5.6 Let p ∈ [43 , 2) be fixed and w0 and g be functions satisfying (H′
1).

a) For each ε ≥ 0, there exists a unique solution wε to the mild vortex equations (34) in
the space

C([0, T ], L1) ∩ C(]0, T ], Lp).

This solution also belongs to C([0, T ], L1) ∩ C(]0, T ], L
4
3 ).

In particular, for ε = 0 there exists under (H′
1) a global solution w = w0 to the mild

equation (7).

Moreover, we have
sup
ε≥0

|||wε|||]0,p,θ → 0 when θ → 0.

b) For all t ∈]0, T ], we have wεt → wt in Lp, and the following estimate holds:

sup
t∈[0,T ]

(
t

1
2 ‖wεt − wt‖p

)
≤ C(p, T )ε

2−p
p .
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Proof: Let wn0 and gn be sequences respectively in L1 ∩ Lp and in C([0, T ], L1 ∩ Lp), and
such that wn0 → w0 in L1 and gn → g in C([0, T ], L1) when n→∞. Observe that

Γ = {wn0 } and ΓT = {gn}

satisfy the hypothesis of Lemma 5.3. For each ε ≥ 0 and n ∈ N we denote by wε,n ∈ F0,p,T

the solution of the mild equation with data wn0 and gn.

We split the proof of a) in several parts. Uniqueness has already been proved in Proposition
5.4.

Convergence of wε,n to a mild solution wε ∈ F ]0,p,T
Using standard Lp estimates for Gνt ∗wn0 and Gνt−s ∗ gns , and similar arguments as those in
(53), we check that

‖wε,nt − wε,mt ‖p ≤ Ct
1
p
−1‖wn0 − wm0 ‖1 + Ct

1
p |||gm − gn|||0,1,T

+ Ct
1
p
−1(|||wε,n − wε,m|||]0,p,θ)

2

for all t ∈ [0, θ]. Thanks to Lemma 5.3, for θ small enough we have for all n,m ∈ N

|||wε,n − wε,m|||]0,p,θ ≤C‖w
n
0 − wm0 ‖1 + CT |||gm − gn|||0,1,T

+ Cδ(θ, p,Γ,ΓT )|||wε,n − wε,m|||]0,p,θ

(the constants are independent of ε, n and m). Therefore, for each ε ≥ 0, the sequence
wε,n is Cauchy in the space F ]0,p,T if θ is small enough.
Next, from the mild equation satisfied by the function wε,nθ+·(·) we deduce that

‖wε,nθ+t − wε,mθ+t‖p ≤C‖w
n(θ)− wm(θ)‖p + C(T )|||gn − gm|||0,1,T

+ C(T )
∫ t

0
‖wε,nθ+s − wε,mθ+s‖pds

for all t ∈]θ, T ]. It follows that {wε,nθ+·}n∈N is Cauchy in the space F0,p,T−θ, and consequently
{wε,n}n∈N converges in F ]0,p,T for each ε ≥ 0. We denote by wε the limit in F ]0,p,T , and set
w = w0.
Using continuity of Bε in the space F ]0,p,T (cf. Remark 5.1 ii) with p = p′) we easily check
for each ε ≥ 0 that wε is a solution of the mild vortex equation (34).

Continuity of t 7→ wεt ∈ L1 ∩ Lp on ]0, T ]
By Lemma 5.5, t → wε,nθ+t is a continuous Lp-valued function on [0, T − θ] for each n and
θ ∈ (0, T ] . This clearly implies that wε ∈ C(]0, T ], Lp).
To prove that wε ∈ C(]0, T ], L1), we notice that by similar arguments as in Lemma 5.5, we
can establish that Bε : (F ]0,r,T ∩C(]0, T ], Lr))2 → F ]0,r′,T ∩C(]0, T ], Lr

′
) is continuous when

4
3 ≤ r ≤ p, 2r

4−r ≤ r′ < r
2−r . Indeed, we have for all t, t′ ∈]0, T ] that

‖Bε(v, u)t − Bε(v, u)t′‖r′ ≤C
(
|||v|||]0,r,T + |||u|||]0,r,T

)∫ t∧t′

0
s

1
r′−

2
r (t− s)

1
r
−1[

‖ut−s − ut′−s‖r + ‖vt−s − vt′−s‖r
]
ds

+ C
(
|||v|||]0,r,T + |||u|||]0,r,T

)2
[(t ∨ t′)

1
r′−1 − (t ∧ t′)

1
r′−1],
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which together with Lebesgue’s theorem yields the asserted continuity property. On the
other hand, it is not hard to check that W0 ∈ C(]0, T ], Lr) for all r ∈ [1, p], from where by
a standard argument (see the proof of Theorem 4.7) it follows that wε ∈ C(]0, T ], L1).

Behavior at θ = 0 of |||wε|||]0,p,θ
¿From Remark 5.1, ii) we deduce for each 4

3 ≤ r ≤ p, 2r
4−r ≤ r′ < r

2−r , and θ ≤ T that

|||wε|||]0,r′,θ ≤ |||W0|||]0,r′,θ + Cr,r′(|||wε|||]0,r,θ)
2,

for a constant Cr,r′ not depending on ε ≥ 0. By Lemma 5.2, if furthermore r′ 6= 1, we
obtain for small enough θ > 0 that

|||wε|||]0,r′,θ ≤ δ(θ, r′,Γ,ΓT ) + Cr,r′(|||wε|||]0,r,θ)
2. (55)

Taking r = r′ = p and proceeding as in the proof of Lemma 5.3, we conclude that

sup
ε≥0

|||wε|||]0,p,θ ≤ 2δ(θ, p,Γ,ΓT ) (56)

for small enough θ.
Continuity of t 7→ wε(t) ∈ L1 in t = 0
We now prove that wεt → w0 in L1 when t→ 0. Notice that by (55), if |||wε|||]0,r,θ → 0 when

θ → 0, then also |||wε|||]0,r′,θ → 0. Thus, by an iterative argument using (55), starting from

(56) and suitably choosing consequent values of r and r′, we deduce that |||wε|||]
0, 4

3
,θ
→ 0.

Taking in Remark 5.1 ii) p′ = 1 and the value 4
3 in place of p yields

‖wε(t)− w0‖1 ≤ ‖Gνt ∗ w0 − w0‖1 + t|||g|||0,1,T + C(|||wε|||]
0, 4

3
,t
)2.

Making t→ 0 we conclude the asserted convergence.

Finally, it is clear by interpolation that a solution in C([0, T ], L1)∩C(]0, T ], Lp) also belongs
to C([0, T ], L1) ∩ C(]0, T ], L

4
3 )

b) Notice that
sup
ε≥0

|||wε|||]0,2,T <∞. (57)

This follows by using once Remark 5.1 ii) (with p′ = 2) if p ∈ (4
3 , 2), and using it twice

(with some p′ ∈ (4
3 , 2) and then with p′′ = 2) if p = 4

3 . Consequently, taking in Lemma 4.5
l = p and using Young’s inequality we obtain, for 1

q = 1
p −

1
2 , that

‖Kε ∗ wεs −K ∗ wεs‖q ≤ ‖Kε −K‖p‖wεs‖2 ≤ Cs−
1
2 ε

2−p
p (58)

for a constant not depending on ε ≥ 0.
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By standard estimates and the previous considerations together with (56), we deduce that
for t ≤ θ

‖wεt − wt‖p ≤C
∫ t

0
(t− s)−

1
p ‖wεs − ws‖p (‖wεs‖p + ‖ws‖p) ds

+ C

∫ t

0
(t− s)−

1
p ‖Kε ∗ ws −K ∗ ws‖q (‖wεs‖p + ‖ws‖p) ds

≤Cδ(θ, p,Γ,ΓT )
∫ t

0
(t− s)−

1
p s

1
p
−1‖wεs − ws‖pds

+ Cδ(θ, p,Γ,ΓT )ε
2−p

p

∫ t

0
(t− s)−

1
p s

(− 1
2
)+( 1

p
−1)

ds

≤Cδ(θ, p,Γ,ΓT )t−
1
2 sup
s∈[0,θ]

(
s

1
2 ‖wεs − ws‖p

)
+ Cδ(θ, p,Γ,ΓT )ε

2−p
p t−

1
2 .

In the last step we used that
∫ t
0 (t− s)−

1
p s

1
p
− 3

2ds = β(δ, θ)t−
1
2 . Therefore,

sup
t∈[0,θ]

(
t

1
2 ‖wεt − wt‖p

)
≤ Cδ(θ, p,Γ,ΓT )

[
sup
t∈[0,θ]

(
t

1
2 ‖wεt − wt‖p

)
+ ε

2−p
p

]
,

and so for some small enough θ > 0 we have

sup
t∈[0,θ]

(
t

1
2 ‖wεt − wt‖p

)
≤ Cδ(θ)ε

2−p
p .

Using this Lp estimate for wεθ − wθ, the mild equations satisfied by wεθ+· and wθ+·, and
similar arguments as in Proposition 4.6, we deduce that

|||wεθ+· − wθ+·|||0,p,T−θ ≤ Cε
2−p

p .

The two previous estimates prove b).

We provide now additional regularity properties.

Theorem 5.7 Under assumption (H′
1), for each p ∈ [43 , 2) we have

sup
ε≥0

|||wε|||]1,p,T <∞

Proof: The proof is similar as in the case of L1 ∩ Lp data, with help of a local existence
result. There are however important differences.
First, we need to slightly modify some lines of Proposition 4.12, since the estimates estimates
valid under (Hp) do no longer hold. For data ŵ0 ∈ Lp and ĝ ∈ F0,1,T̂ , T̂ > 0, we have by
Hölder’s inequality the estimate

|||Ŵ0|||1,p,T̂ ≤ C ′(p)
(
‖ŵ0‖p + T̂

1
p |||ĝ|||0,1,T̂

)
(with the obvious meaning of Ŵ0) for some constant C ′(p) > 0. From this and from Lemma
4.11, we deduce that a solution ŵε ∈ F1,p,θ to the mild vortex equation exists, as soon as
θ ∈ (0, T̂ ] satisfies

θ
1− 1

p

(
‖ŵ0‖p + T̂

1
p |||ĝ|||0,1,T̂

)
< λ′p, (59)
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for certain constant λ′p > 0 independent of ε ≥ 0. This local solution ŵε satisfies

|||ŵε|||1,p,θ ≤ 2C ′(p)
(
‖ŵ0‖p + T̂

1
p |||ĝ|||0,1,T̂

)
. (60)

Recall now that for each r > 0 the function wε(r+ ·) solves on [0, T − r] the mild equation
with data ŵ0 = wεr and ĝ = gr+·. Since now wε 6∈ F0,p,T , we cannot expect (59) to hold for
some θ > 0 uniformly in the initial conditions ŵ0 = wεr , r ∈ [0, T ]. Nevertheless, Theorem
5.6 a) implies that supε≥0 θ

1− 1
p ‖wεθ‖p → 0 when → 0, so that there is θ0 > 0 small enough

such that for all θ ∈]0, θ0],

sup
ε≥0

θ
1− 1

p

(
‖wεθ‖p + T

1
p |||g|||0,1,T

)
< λ′p.

Consequently, by the previous existence argument there is a solution ŵε ∈ F1,p,θ for the
data ŵ0 = wεθ and ĝ = gθ+· to the same equation satisfied by wεθ+· in F0,p,T−θ. Using
uniqueness in F0,p,θ∧(T−θ) and estimate (60), we deduce that

|||wεθ+·(·)|||1,p,θ ≤ 2C ′(p)
(
‖wεθ‖p + T

1
p |||g|||0,1,T

)
.

It follows that for each s ∈ [0, θ]

s
1
2 ‖∇wεθ+s‖p ≤ C(‖wεθ‖p + T

1
p |||g|||0,1,T )

with a constant C not depending on ε ≥ 0. This yields for any θ ∈ (0, θ0]

θ
3
2
− 1

p ‖∇wεθ‖p ≤C(θ/2)1−
1
p (θ/2)

1
2 ‖∇wεθ/2+θ/2‖p

≤C(θ/2)1−
1
p (‖wεθ/2‖p + T

1
p |||g|||0,1,T )

≤C(|||wε|||]0,p,T + T |||g|||0,1,T ).

We deduce that supε≥0 |||wε|||
]
1,p,θ0

<∞.
To obtain an upper bound in the whole interval [0, T ], notice that for any r ∈ [θ0/2, T ] and
θ > 0, we have

θ
1− 1

p ‖wεr‖p ≤
(

2θ
θ0

)1− 1
p
(

sup
ε≥0

|||wε|||]0,p,T

)
≤ Cθ

1− 1
p .

Therefore, there exists θ1 > 0 such that for all r ∈ [θ0/2, T ]

sup
ε≥0

θ
1− 1

p

1

(
‖wεr‖p + T

1
p |||g|||0,1,T

)
< λ′p.

We deduce as before, that for all such r it holds

|||wεr+·(·)|||1,p,θ1 ≤ 2C ′(p)
(
‖wεr‖p + T

1
p |||g|||0,1,T

)
.

We can now proceed as in the last part of the proof of Theorem 4.13 i) (i.e. by suitably
splitting the interval [θ/2, T ] and applying the previous local estimate), and conclude that

sup
ε≥0

|||wεθ/2+·(·)|||1,p,T−θ/2 <∞.

This fact achieves the proof.

By similar arguments as in Corollary 4.14 i), we deduce the proof of
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Corollary 5.8 Assume that (H′
1) holds and let wε with ε ≥ 0 be the unique solution to

the mild equation (34) in C([0, T ], L1)∩C(]0, T ], Lp), p ∈ [43 , 2) given by Theorem 5.6. We
have

sup
ε≥0

sup
t∈[0,T ]

{
t

3
2
− 1

p

(
‖Kε ∗ wεt ‖∞ + ‖Kε ∗ wεt ‖C2− 2

p

)}
<∞.

5.2 The nonlinear process and particle approximations

We now proceed to prove, under assumption (H′
1), convergence of the mollified nonlinear

processes, and existence and uniqueness for the nonlinear martingale problem (MP).

Definition 5.9 For p ∈ [43 , 2), we denote by P ′
p,T the space of probability measures on

CT = [0, T ]×C([0, T ],R2) such that for each t ∈ [0, T ], the signed measure P̃t has a density
ρ̃t with respect to the Lebesgue measure and ρ̃ ∈ C([0, T ], L1) ∩ C(]0, T ], Lp) ∩ F ]0,p,T .

Theorem 5.10 Assume (H′
1).

a) For each p ∈ [43 , 2), there exists in the class P ′
p,T a unique solution P to the nonlin-

ear martingale problem (MP). The corresponding function ρ̃ is equal to the unique
solution w ∈ C([0, T ], L1) ∩ C(]0, T ], Lp) ∩ F ]0,p,T of the mild equation (7).

b) The solution P ∈ P ′
p,T is the limit in law when ε → 0 of the laws Pε of the mollified

processes (Xε).

Proof: We proceed in several steps.
Uniqueness. Let P ∈ P ′

p,T be a solution of (MP). Since 4
3 ≤ p < 2, for f : R2 → R

the interpolation inequality ‖f‖
4
3
4
3

≤ ‖f‖1 + ‖f‖pp holds (cf. |f |
4
3 ≤ |f |1|f |≤1 + |f |p1|f |>1).

Taking f = tρ̃t and multiplying by t−1, we deduce that ρ̃ ∈ F ]
0, 4

3
,T

. Therefore, as for (41),

we obtain ∫
[0,T ]×R2

|K ∗ ρ̃t(x)||ρ̃t(x)|dxdt <∞.

Also by standard arguments we deduce that ρ̃ is a mild solution of (7) in the space
C([0, T ], L1) ∩ C(]0, T ], L

4
3 ) ∩ F ]

0, 4
3
,T

. Consequently, if P 1 and P 2 are two solutions, the

associated functions ρ̃1 and ρ̃2 are equal by Theorem 5.6. We set w = ρ̃2 = ρ̃1.
Let us now define a family (P̂ it )t∈[0,T ] of sub-probability measures P̂ it on R2 by∫

R2

f(x)P̂ it (dx) = EP
i (
f(Xt)1{τ≤t}

)
(61)

with (τ,X) the canonical process. Notice that the drift coefficient is not bounded, so it is
not immediate whether each P̂ it has a density. Denote by Dn, n ∈ N\{0} the shift operator
defined in the canonical space [0, T ]× C([0, T ],R2) by

Dn((τ,X)) =
(

(τ − 1
n

)+, X·+ 1
n

)
.
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Under the laws Qin := P i ◦D−1
n , i = 1, 2, the canonical variable (τ,X0) has law P i1

n

given
by ∫

R2×[0,T− 1
n

]
f(t, x) P i1

n

(dt, dx) =EP
i

(
f((τ − 1

n
)+, X 1

n
)
)

=
∫ T

1
n

∫
R2

f(t− 1
n
, x)P0(dt, dx) +

∫
R2

f(0, x)P̂ i1
n

(dx).

Then, under Qin, the canonical process (τ,X) solves the martingale problem

• Q ◦ (τ,X0)−1 = P i1
n

• f(t,Xt)− f(τ,X0)−
∫ t
0

[
∂f
∂s (s,Xs) + ν4f(s,Xs) +K ∗ ws+ 1

n
(Xs)∇f(s,Xs)

]
1s≥τds,

0 ≤ t ≤ T − 1
n , is a continuous Q-martingale for all f ∈ C1,2

b w.r.t. the filtration Gt = Ft+ 1
n
.

(62)

Notice that we cannot ensure by the moment that the ”initial condition ” Qin ◦ (τ,X0)−1 is
uniquely determined. On the other hand, if that fact is established, we deduce that (MP)
has a unique solution as follows. First, we remark that the drift coefficient K ∗ ws+ 1

n
is

bounded by Corollary 5.8. Then, we can adapt standard results on martingale problems to
deduce that P 1 ◦D−1

n = P 2 ◦D−1
n for all n ∈ N. Since both probability measures converge

as n→∞, respectively to P 1 and P 2, this is enough to conclude that P 1 = P 2.
So we proceed to check that P 1

1
n

= P 2
1
n

, which by (61) is equivalent to P̂ 1
1
n

= P̂ 2
1
n

. First we

prove that these two probability measures on R2 have densities, or more generally, that
P̂ it , i = 1, 2 have densities for each t > 0.
Observe that for t > 0 the indicator function in the definition (61) can be replaced by that
of the event {τ < t}. Thus, it is not hard to check that for t > 1

n it holds that∫
f(x)P̂ it (dx) = EQ

i
n(f(Xt− 1

n
)1{τ<t− 1

n
}). (63)

On the other hand, since K∗ws+ 1
n

is bounded, by a standard argument based on Girsanov’s

theorem we can check that Qin is absolutely continuous (on [0, T − 1
n ]× C([0, T − 1

n ],R2))
w.r.t. the law of the process (τ,X0 +

∫ t
0 1s≥τdBs), where (τ,X0) has distribution P i1

n

and

B is an independent Brownian motion. From this and (63) it follows that P̂ it (dx) has a
density (independently of whether P i1

n

does or not). Hence, P̂ it has a density for all t.

We denote the density of P̂ it by ρ̂it. We just have to prove that ρ̂1
t = ρ̂2

t .
Following similar arguments as in the proof of Lemma 3.9 ii), and using the fact that∫

[0,T ]×R2

|K ∗ wt(x)|ρ̂it(x)dx dt <
∫ T

0
‖K ∗ wt‖∞dt <∞

by Corollary 5.8, we deduce that

ρ̂it(x) = Gνt ∗ w̄0(x) +
∫ t

0
Gνt−s ∗ ḡs(x) ds+

∫ t

0
∇Gνt−s ∗

[
(K ∗ ws)ρ̂is

]
(x) ds
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for all t ∈ [0, T ], where w̄0(x) = |w0(x)|
‖w0‖1+‖g‖1,T

and ḡs(x) = |gs(x)|
‖w0‖1+‖g‖1,T

. We take L
4
3 norm

and use the estimate ‖Kε ∗ w(s)ρ̂is‖1 ≤ Cs−
3
4 (following from Corollary 5.8) to get that

‖ρ̂it‖ 4
3
≤ Ct−

1
4 + C + C

∫ t

0
(t− s)−

3
4 s−

3
4ds = Ct−

1
4 + C + Ct−

1
2 .

Consequently, we have supt∈[0,T ]

(
t

1
2 ‖ρ̂it‖ 4

3

)
<∞, and then, by similar steps as in the proof

of Theorem 5.6 b), we obtain

sup
t∈[0,θ]

(
t

1
2 ‖ρ̂1

t − ρ̂2
t ‖ 4

3

)
≤ Cδ(θ) sup

t∈[0,θ]

(
t

1
2 ‖ρ̂1

t − ρ̂2
t ‖ 4

3

)
for small enough θ, and δ(θ) a function associated to w as in Theorem 5.6 a), satisfying
thus δ(θ) → 0 when θ → 0. We conclude that ρ̂1

t = ρ̂2
t for small enough t, and then for all

t by looking at the equations satisfied by ρ̂i1
n

+t
(x) in F0, 4

3
,T− 1

n
. Uniqueness is proved.

Estimates for time-marginal laws of P ε

Consider ε > 0 and let ρ̃ε be the weighted density associated with the law P ε of the
mollified process Xε, and ρ̂ε be the density of f 7→ E(f(Xε

t )1{τ≤t}). For an arbitrary
p ∈ [43 , 2), we take the Lp norm in the mild equations satisfied by ρ̃ε. From the fact
that supt∈[0,T ] ‖(Kε ∗ ρ̃εt )ρ̃εt‖1 < C(ε) < ∞, and using Lemma 2.2 together with Young’s
inequality, we deduce that

sup
t∈[0,T ]

t
1− 1

p ‖ρ̃εt‖p <∞.

Similarly, starting from the mild equation satisfied by ρ̂ε,

ρ̂εt (x) = Gνt ∗ w̄0(x) +
∫ t

0
Gνt−s ∗ ḡs(x) ds+

∫ t

0
∇Gνt−s ∗ [(Kε ∗ ρ̃εs)ρ̂εs] (x) ds, (64)

and since supt∈[0,T ] ‖(Kε ∗ ρ̃εt )ρ̂εt‖1 < C ′(ε) <∞, we deduce that

sup
t∈[0,T ]

t
1− 1

p ‖ρ̂εt‖p <∞.

By standard arguments, the function ρ̃ε(t+ ·) ∈ F0,p,T−t solves the mollified mild equation
with data satisfying (H′

1) and (Hp). From Lemma 5.5 we deduce that ρ̃ε ∈ C([0, T ], L1) ∩
C(]0, T ], Lp) and therefore, by Theorem 5.6, ρ̃ε equals the unique solution wε given therein.
In particular, if we define

δ̃(θ) := sup
ε>0

sup
t∈[0,θ]

t
1− 1

p ‖ρ̃εt‖p,

then δ̃(θ) converges to 0 when θ tends to 0. Moreover, taking Lp norm in (64) and using
Remark 5.1 we get

|||ρ̂ε|||]0,p,θ ≤ |||W̄0|||]0,p,θ + Cδ̃(θ)|||ρ̂ε|||]0,p,θ
with W̄0 defined in the natural way in terms of w̄0 anf ḡ. It follows that

|||ρ̂ε|||]0,p,θ0 ≤ 2|||W̄0|||]0,p,θ0 (65)
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for θ0 > 0 small enough. Since supε≥0 |||ρ̃εθ0+·(·)|||0,p,T−θ0 < ∞ by Theorem 5.6, by looking
at the mild equations satisfied by the functions ρ̂εθ0+·, ε ≥ 0, which have initial conditions
ρ̂εθ0(x) that are bounded in Lp uniformly in ε by (65), we conclude that

|||ρ̂ε|||]0,p,T <∞.

(This estimate will be used below in the particular case p = 4
3).

Tightness of the family (Pε): From Corollary 5.8, if 0 < η < 1 and S,R are stopping
times in the filtration of (τ,Xε) such that S ≤ R ≤ T and R− S ≤ η, we have∫ R

S
|Kε ∗ ρ̃εt (Xε

t )|dt < Cη
1
p
− 1

2

for a constant C > 0 independent of ε > 0. Tightness follows from Aldous criterion (p < 2).

Identification of accumulation points as solutions of (MP)
Let P be an accumulation point. By suitably approximating the function h by continuous
functions (cf. [12]), one can check that

∫
R2 ψ(x)ρ̃εt (x)dx = E(ψ(Xε

t )h(τ,X0)1{t≥τ}) con-
verges to EP (ψ(Xt)h(τ,X0)1{t≥τ}) when ε tends to 0 for every ψ ∈ D. Consequently, since
ρ̃ε = wε, we have by Theorem 5.6 b) that

P̃t(dx) = wt(x)dx,

with w the unique solution of the mild vortex equation in C([0, T ], L1) ∩ C(]0, T ], Lp).
Let us take f ∈ C1,2

b , 0 ≤ s1 ≤ · · · ≤ sm ≤ s < t ≤ T and λ : [0, T ]×R2m → R a continuous
bounded function. To show that P is a solution of (MP), it is enough to prove that

EP
[(∫ t

s

{
∂f

∂r
(r,Xr) + ν∆f(r,Xr) +K ∗ wr(Xr)∇f(r,Xr)

}
1{r≥τ}dr

+ f(t,Xt)− f(s,Xs)
)
× λ(τ,Xs1 , . . . , Xsm)

]
= 0, (66)

with (τ,X) being the canonical process. Define a function κ : [0, T ]×C([0, T ],R2) → R by

κ(θ, ξ) =
(∫ t

s

{
∂f

∂r
(r, ξ(r)) + ν∆f(r, ξ(r)) +K ∗ wr(ξ(r))∇f(r, ξ(r))

}
1{r≥θ} dr

+ f(t, ξ(t))− f(s, ξ(s))
)
× λ(θ, ξ(s1), . . . , ξ(sm)). (67)

Thanks to Corollary 5.8, κ is continuous and bounded, and consequently,

EP (κ(τ,X)) = lim
ε′→0

E(κ(τ,Xε′))

for P ε
′
the subsequence converging to P . We conclude by showing that this limit is 0.

From the martingale problem satisfied by P ε
′
we deduce that∣∣∣E(κ(τ,Xε′))

∣∣∣ ≤CE [∫ T

0

∣∣∣Kε′ ∗ ρ̃ε
′
s (Xε′

s )−K ∗ ws(Xε′
s )
∣∣∣1{s≥τ}ds]

≤C
∫ T

0

∫
R2

∣∣∣Kε′ ∗ ρ̃ε
′
s (x)−K ∗ ws(x)

∣∣∣ ρ̂ε′s (x)dx ds

≤C
∫ T

0

(
‖Kε′ ∗ ρ̃ε

′
s −Kε′ ∗ ws‖4 + ‖Kε′ ∗ ws −K ∗ ws‖4

)
‖ρ̂ε′(s)‖ 4

3
ds
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by Hölder’s inequality. By Lemma 4.1 with p = 4
3 and q = 4, Young’s inequality and

Lemma 4.5 with l = 4
3 , the latter is bounded above by

C sup
ε>0

|||ρ̂ε′ |||0, 4
3
,T

∫ T

0
s−

1
4

[
‖ρ̃ε′s − ws‖ 4

3
+ ‖K −Kε′‖ 4

3
‖ws‖2

]
ds

≤ C

∫ T

0
s−

1
4

[
‖ρ̃ε′s − ws‖ 4

3
+ ‖K −Kε′‖ 4

3
‖ws‖2

]
ds

the last inequality owing to (58) and to Theorem 5.6 b). Thus, we have∣∣∣E(κ(τ,Xε′))
∣∣∣ ≤ C(ε′)

1
2

∫ T

0
s−

1
4 s−

1
2ds = CT

1
4 (ε′)

1
2

which tends to 0. This concludes the proof.

We finally deduce the following approximation results in the L1 setting.

Corollary 5.11 Let T > 0 and assume that (H′
1) holds. Consider a sequence εn → 0 and

the system of particles (Zin)n∈N,i=1...n defined as in Corollary 4.17.
Let p ∈ [43 , 2) and P ∈ P ′

p,T be the law of the nonlinear processes associated with the unique
solution w ∈ C([0, T ], L1) ∩ C(]0, T ], Lp) of the vortex equation. Then, for each k ∈ N,

law(Z1n, . . . , Zkn) =⇒ P⊗k when n→∞.

Proposition 5.12 Assume that (H′
1) holds, and recall that u(t, x) = K ∗ wt(x). Let the

weighted empirical process µ̃n,εn
s and the sequence εn be defined as in Corollary 4.18. Then,

the sequence
sup
x∈R2

E
(
|Kεn ∗ µ̃

n,εn
t (x)− u(t, x)|

)
→ 0

for all fixed t ∈]0, T ], as n tends to infinity, from which we deduce that∫ T

0
sup
x∈R2

E
(
|Kεn ∗ µ̃

n,εn
t (x)− u(t, x)|

)
dt→ 0.

Proof: We essentially follow the proof of Corollary 4.18, in which the continuity of the
bilinear operator B in the spaces F1,r,(T ;p) is needed. Under the weaker assumption (H′

1),
our solution only belongs to F ]1,p,T (see Theorem 5.7), and in this setting we are not able
to extend the continuity properties of B to a space analogous to F1,r,(T ;p).
We thus consider the family of shifted solutions {wεr+·}ε≥0 for r ∈]0, T ]. By similar compu-
tations as in (50) we obtain that

|||wεr+· − wr+·|||1,p,T ≤ C(r, T )ε
2−l

l + C ′(r, T )r−
1
2 ε

2−p
p ,

where the second term in the r.h.s. is due to the difference of the initial conditions in the
shifted versions of 49, controlled by Theorem 5.6 b).
From this we deduce that the third term on the r.h.s. of (52) goes to 0 for each fixed t ∈]0, T ].
As in the proof of Corollary 4.18, the expectations of the two other terms are bounded and
go to 0 uniformly in x ∈ R2 and t ∈ [0, T ]. This yields the first convergence result. To apply
the dominated convergence theorem we use moreover the fact that ‖Kε∗wεt ‖∞ ≤ C‖wεt ‖W 1,p

and Theorem 5.7.
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6 Numerical results

We consider data w0 and g satisfying the second moment conditions
∫

R2 |x|2|w0(x)|dx < +∞
and

∫ T
0

∫
R2 |x|2|g(s, x)|dx ds < +∞. Taking φ(s, x) = 1 and φ(s, x) = |x|2 in Equation (6),

and using the fact that div K ∗w(s, x) = 0 for the associated solution w, we can check that
for all t ∈ [0, T ], ∫

R2

wt(x)dx =
∫

R2

w0(x)dx+
∫ t

0

∫
R2

gs(x)dx ds,

and∫
R2

|x|2wt(x)dx =
∫

R2

|x|2w0(x)dx+
∫ t

0

∫
R2

|x|2gs(x)dx ds+ 4ν
∫ t

0

∫
R2

ws(x)dxds.

The two previous quantities are respectively called ”total flux of vorticity” (TFV) and
”moment of fluid impulse” (MFI).
For the simulations, we take an initial condition w0 equal to the density of the centered
normal distribution on R2, with given variance m0 = 2, and g(s, x) := γw0(x) with γ 6= 0 a
constant to be fixed. Thus, we have ‖w0‖1 + ‖g‖1,T = 1 + |γ|T . Notice also that Equation
(6) implies that the ”barycenter” is null:

∫
R2 xiwt(x)dx =

∫
R2 xiw0(x)dx = 0 for i = 1, 2.

Let us now consider the equi-spaced partition {tk}Nk=0 of [0, T ] in N subintervals. Through
simple computations using (8) we obtain for k = 1, . . . , N that

P (τ = 0) =
1

1 + |γ|T
; P (τ ∈]tk−1, tk]) =

|γ|T
N(1 + |γ|T )

and
P (X0 ∈ dx

∣∣τ = 0) = P (X0 ∈ dx
∣∣τ ∈]tk−1, tk]) = w0(x)dx.

Moreover, we have

h(0, x) = 1 + |γ|T and h(t, x) = sign(γ)(1 + |γ|T ) for t ∈]0, T ].

Taking as parameter p = P (τ = 0), we have: |γ| = 1−p
pT , P (τ ∈]tk−1, tk]) = (1−p)

N , h(0, x) =
1
p and h(t, x) = sign(γ)1

p for t ∈]0, T ]. Hence we obtain∫
R2

wt(x)dx = 1 + sign(γ)
(

1− p

pT

)
t,

and

m(t) :=
∫

R2

|x|2wt(x)dx = 2 +
(

2sign(γ)
(

1− p

pT

)
+ 4ν

)
t+ 2νsign(γ)

(
1− p

pT

)
t2.

We compute these two quantities at each time tk using the particle vortex method. Choosing
sign(γ) = −1, we simulate the Euler scheme of the trajectory of each particle Xi,n

t =
(Xi,n

t,1 , X
i,n
t,2 ) defined in (18). We thus obtain the data (Xi,n

tk,1
, X i,n

tk,2
){1≤i≤n ; 1≤k≤N}.

The empirical values of TFV and MFI will be given by

1
pn

n∑
i=1

1{tk≥τ i}(1{τ i=0} − 1{τ i 6=0})
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Figure 1: ε = 10−4, ν = 5× 10−7, n = 6000, T = 50,4t = 0.8, p = 2

3 , sign(γ) = −1

0 10 20 30 40 50

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

MFI & empirical  MFI 

t

 

0 10 20 30 40 50

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

relative error

t

er
r.

m
om

2

Figure 2: ε = 10−4, ν = 5× 10−7, n = 6000, T = 50,4t = 0.8, p = 2
3 , sign(γ) = −1

and

M(tk) :=
1
pn

n∑
i=1

(|Xi,n
tk,1

|2 + |Xi,n
tk,2

|2)1{tk≥τ i}(1{τ i=0} − 1{τ i 6=0}).

Notice that the Total Flux of Vorticity does not depend on particles positions, but only
on the number of vortices ”alive” at each time and on their ”sign” . Therefore, the first
graphic in Figure 1. illustrates the law of large numbers for the random time birth τ . The
second graphic in Figure 1. illustrates the fact that the barycenter is null.
Figure 2. shows the theoretical and empirical Moment of Fluid Impulse and the relative
error, computed as |m(tk)−M(tk)|

M(tk) . Let us remark that the probabilistic vortex approach is
robust for very small viscosities.
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Figure 3: ε = 10−4, ν = 5× 10−7, n = 1000, T = 100, 4t = 1, p = 1
3 , sign(γ) = −1
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In Figure 3. we show the time evolution of the velocity field in a regular grid. At time
t = 0 all vortices have positive sign, and then new vortices with negative signs randomly
appear. Observe that at each point the norm of the velocity field progressively decreases,
attains 0 and then increases, while its direction is progressively reversed.
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References

[1] Bossy, M.: Vitesse de convergence d’algorithmes particulaires stochastiques et applica-
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