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Abstract

We consider a class of 2d Navier-Stokes equations with external non-conservative
forces. We develop a probabilistic interpretation based on a vortex equation with
external integrable field. We relate the latter to a nonlinear process with random space-
time birth, providing a probabilistic description of the creation of vorticity. The initial
data and external field are only assumed to satisfy integrability properties. Initially, a
regularized version of the process is obtained, replacing the singular Biot and Savart
kernel by some Lipschitz continuous regularization. Then, we remove the regularization
parameter and deduce the existence, uniqueness and regularity of a mild solution of the
vortex equation with external field, and thus the existence of the nonlinear process.
We define interacting particle systems with space-time random births and propose a
stochastic numerical particle method for the vorticity and also for the velocity field. We
obtain either pathwise or weak convergence results, depending on the integrability of the
initial data and of the external field. We finally illustrate our results with simulations.

1 Introduction

The Navier-Stokes equation for an homogeneous and incompressible fluid in the whole plane
subject to an external force field f, is given by

%‘-l—(u-V)u:yAu—Vp—Ff; "
1

divu(t,z) =0; u(t,x) — 0 as |z| — oco.

Here, u denotes the velocity field, p is the pressure function and v > 0 is the viscosity
(constant) coefficient.

In absence of the external force field, (or more generally, when f = VU is a conservative
field), a probabilistic interpretation of (1) is known since the work of Marchioro and Pul-
virenti [15]. The probabilistic approach to (1) is based on the associated vortex equation,
i.e. the equation satisfied by the (scalar) vorticity field w := curlu, which is interpreted as
a generalized McKean-Vlasov equation associated with a nonlinear diffusion process. This

'DIM-CMM, UMI(2807) UCHILE-CNRS, Universidad de Chile. Casilla 170-3, Correo 3, Santiago-Chile,
fontbona@dim.uchile.cl. Supported by Fondecyt Project 1040689 and Millennium Nucleus Information and
Randomness ICM P04-069-F.

2MODAL’X, Université Paris 10, 200 av. de la République, 92000 Nanterre, France, sylvie.meleard@u-
paris10.fr. Supported by Fondecyt International Cooperation 7050142.



process can also be obtained as the limit of interacting particle systems in mean field inter-
action, and this fact provides stochastic approximations of the vortex equation associated
with (1). Convergence on the path space of these particles (or equivalently, propagation of
chaos for the system) has been proved in more recent works of Méléard [16] and [17].

In this work, we will extend such approach to the Navier-Stokes equation with external
force field (1). We will permanently combine analytical and probabilistic arguments.

The non-conservative external force gives an additional field g = curlf in the vortex equa-
tion. More precisely, the vorticity field w = curl u satisfies the scalar equation

%—1;’+(K*w-V)w:yAw+g;

where K(z) = & (T””;‘fl) is the so-called Biot-Savart kernel in R?.

The external field g is physically interpreted as creation of vorticity. In order to provide a
probabilistic description of this phenomenon, we relate this equation to a nonlinear process
with random birth in space and time, according to a law related to the initial vorticity wg
and the external field g. A similar idea is developed in the work of Jourdain and Méléard
[13] in the context of a vortex equation on a bounded domain with Neumann’s condition
on the boundary.

A minimal assumption for the probabilistic study of the vortex equation, is that wg and
g(t,-) are integrable functions for each ¢. Our first goal is to prove existence and uniqueness
both for the vortex equation and for the nonlinear process under this assumption. The main
difficulties in this study are the singularity of the kernel K and the lack of continuity of
the convolution operator K s w for w € L.

Therefore, we will first consider a mollified setting, working with regularized versions of
the Biot-Savart kernel. We will adapt the classic McKean-Vlasov techniques to prove the
pathwise existence and uniqueness of a mollified nonlinear process. The family of its time-
marginal laws weighted by some function of the space-time initial data gives a solution of
the mollified vortex equation. By construction these solutions are in L!, uniformly on the
regularization parameter.

We construct a stochastic interacting particle system with space-time births and prove
propagation of chaos and its convergence to the mollified nonlinear process.

In order to remove the regularization parameter, we will assume in a first step that the initial
vorticity and external field belong to L' N L?, for p > %. This choice is suggested by the
continuity properties of the Biot and Savart operator. To obtain uniform LP estimates, we
introduce original techniques that take advantage of the volume preserving property of the
stochastic flow associated with the mollified nonlinear process. We deduce the existence of
a global mild solution of the vortex equation. By analytic techniques we prove uniqueness
and regularity of this solution, and then the pathwise existence and uniqueness of the
nonlinear process. Moreover, we obtain pathwise convergence for the particle system in a
strong norm, and deduce an approximation result for the velocity field u at an explicit rate.
In a second step, we extend our results to L' initial condition and external field. The
analytical part of our study generalizes to the case g # 0 some compacity arguments of
Ben-Artzi [2] and Brezis [5] when ¢ = 0. Hence, we obtain existence, uniqueness and
regularity of the mild solution of the vortex equation. We deduce existence and uniqueness
in law for the nonlinear process, by proving the convergence of some martingale problems,
and convergence in law of the particle approximations.



The explosion of the solution at time 0 prevents us in this case from obtaining pathwise
results and a stronger convergence.

Our results improve the functional (L' N L>) assumption required in [15] and [16], and also
the smallness condition on the norm |Jwpl[; partially needed in [17].

We finally illustrate our results with numerical simulations.

1.1 Notation

- C12 is the set of real valued functions on [0, 7] x R? with continuous derivatives up to
the first order in ¢ € [0,7] and up to the second order in = € R. Cl} 2 is the subspace
of bounded functions in C*? with bounded derivatives.

- D is the space of of infinitely differentiable functions on R? having compact support.

- For all 1 < p < oo we denote by LP the space LP(R?) of real valued functions on R2.
By | - ||, we denote the corresponding norm and p* stands for the Holder conjugate
of p. We write WP = W¥P(IR?) for the Sobolev space of functions in LP with partial
derivatives up to the i-th order in LP.

- C and C(T) are finite positive constants that may change from line to line.

The next two elementary results will be used throughout.

Lemma 1.1 Let ¢,0 be strictly positive constants and (3(0,¢) fo 5)9=1s*=1ds be the
Beta function of parameters 8 and €. Then, for allt > 0,

t
/ (t — )7 Lss 7 ds = 19471 5(0, ).
0

The following is a version of Gronwall’s lemma proved for instance in [9].

Lemma 1.2 Letk : [0,T] — Ry be a bounded nonnegative measurable function and suppose
that there are constants C, A >0 and 6 > 0 such that, for all t < T,

<A+C/ 5)0 71k (s) ds.

Then,

supk(t) < CrA,
t<T

where the constant Cp does not depend on A.

2 The vortex equation with external force and its probabilis-
tic interpretation

The vortex equation associated with the Navier-Stokes equation with external force (1) is
the equation satisfied by w = curl u, that is

9w 4 (0 V)w=vAw+g;
(2)

wo(z) = curl u(0,x)



where u is the velocity field solution of (1) and
g = curl f. (3)

Thanks to divergence free property of u and the Biot-Savart law, we can write

u=Kxw (4)
where 1 )
_ = —x2,T1 2
K(z) = o a0 “ER \{0}

is the so-called Biot-Savart kernel in R2.

We will fix for all the sequel an arbitrary finite time interval [0, 7.

In view of our probabilistic interpretation of Equation (2), it is natural and necessary
to assume that the functions wy : R?> — R and g : R; x R?> — R satisfy the minimal
integrability hypothesis:

® Wy € LI(R2).
e g€ LY([0,T] x R?).

We denote by |[|g|j1,7 the L-norm of g on [0,7] x R? :

T
HQHLT—/ / lg(s, x)|dx ds.
o Jr2

We are interested in weak solutions of (2) defined as follows.

Definition 2.1 A measurable function w : [0,T] x R? — R is a weak solution of the vortex
equation (2) with initial condition wo and external field g on the interval [0,T], if

/[0 g @ )t < o (5)
T x

and for every function ¢ € C’;’z([O, T] xR?) and t < T,

/R2 o(t, x)w(x)de = /R2 (0, x)wo(z)dz +/0 - (s, x)gs(z)dz ds

t 09(s, )
+/0 /R? [ 5 TVA(s, ) + (K *ws)(2)Ve(s, 2) | ws(x)da.
(6)

Even if our probabilistic approach naturally leads to this type of solution, for analytic
purpose we need to deal with mild solution of Equation (2). We denote by

GY(z) == (dmwt)~Le~l#l*/ 4wt

the heat kernel in R%. The following are well known estimates.



Lemma 2.2 Let m € [1,00] and | > m. There exist constants c¢(m,l),c'(m,l) > 0 such
that for all f € L™

1_1 y _1.1_ 1
G flle < e(m, DET™ || flm and IVGY * flli < ¢ (m, D250 | flm-

Definition 2.3 A measurable function w : [0,T] x R? — R is called a mild solution of the
vortex equation with external field g if condition (5) holds and

wi(z) = GY * wo(x) —l—/o Gi_4xgs(x) ds —I—/O VG, * [(K * ws)ws] () ds (7)

for all t € [0,T].

Remark 2.4 A weak solution is always a mild solution. This is easily seen by taking for
each firedt > 0 and ¢ € D in Equation (6) the function ¢:(s,x) = Gy_x(x) (which solves
on [0,t[xR? the heat equation with final condition ). Using Fubini’s theorem (thanks to
(5)) yields (7). The converse is immediate.

2.1 The nonlinear process with random space-time birth

In the case ¢ = 0, Equation (2) can be seen as a generalized McKean-Vlasov equation,
associated with a nonlinear stochastic process. When g # 0, an additional ”free” term
appears in the weak formulation of the equation (Definition 2.1). We interpret this term
as creation of vorticity, associating with Equation (2) a nonlinear process with random
space-time birth. An analogous approach has been developed in Jourdain and Méléard
[13]. In that work, a vortex equation on a bounded domain with Neumann’s condition on
the boundary is associated with a nonlinear process with space-time random birth located
at the boundary.

Let us define the probability measure Py(dt,dx) on [0,T] x R? by

o (a)| 9u(a)
Po(dt, da) = So(dt) — LN g NI 4 g, 8
oldt, d) = do(d) s ol ™ ™ Twolh + glhr (8)

together with the scalar weight function

gt(z)
gt ()]

wolT
Wt x) = 1{,::0},1038, (lwoll + lgllur) +

(llwollx + llgll1,7) Lie>0} 9)

with the convention ”% = 0" and 1 denoting the indicator function. Hence, h takes values
in {—([lwollx + llgll1.7), 0, lwollx + llgllr}-

Remark 2.5 For any measurable bounded function ¢ on [0,T] x R?,

/ o(t, z)h(t, x)Py(dx, dt) = (0, x)wo(z)dz +/ o(t, x)ge(z)dx dt
[0,T]xR2

R2 [0,T]xR2

Let now (7, (X¢)te[o,77) denote the canonical process on the space Cr := [0, T]x C([0, T], R?).

With each probability measure () on Cr we associate the flow of signed measures (Qt)te[O,T]
on R?, defined for all bounded measurable function f : R> — R by

Qi(f) = E9(f(Xe)h(T, X0)Lt>r)- (10)



Clearly, for each ¢ € [0, 7] the total mass of Q; is bounded by |lwol1 + ||g]l1.7-

Notice furthermore that if )o (X;)~! has a density, say p;, then so does Q:. We then denote
the density of Q; by

pi ()
We always take versions of (t,x) — pi(x) and (¢,2) — py(z) that are measurable in the
pair of variables (t,x), if such versions exist.

Definition 2.6 A probability measure P on Cr is a solution to the nonlinear martingale
problem (MP) if

o Po(1,Xo)"! = Py and P; has bi-measurable densities p;(x) for (t,z) € [0,T] x R?
L f(taXt) - f(T, XO) - f(;f [%(Sva) + VAf('s»Xs) + K * ﬁs(Xs)Vf(SaXs) ]-sZ‘rdsa
0<t<T, is a continuous P-martingale for all f € C;’z w.r.t. the filtration
Fi=o(1,(Xs),s <t).
The link between this problem and Equation (2) is the following.

Lemma 2.7 Assume that the problem (MP) has a solution P which satisfies
/ | K * ()| pr(x)|dadt < oo.
[0,T]xR?

Then w := p is a weak solution of the vortex equation with external force field (2).

Proof: Since the variable h(7, Xo)1{,<; is measurable with respect to Fy, the process
f(t, Xe)h(7, Xo)1r<py — f(7, Xo)h(T, X0)1{r<)

t
_/ [Z(S,XS)+yAf(s,XS)ds+K*ﬁS(X5)Vf(s,XS) h(7, X0)1{s>ryds
0

is a P-martingale for all f € C; 2 w.r.t. (F). We take expectation and use Fubini’s theorem,
and we conclude by Remark 2.5 and the definition of p.
[

By a standard argument using the semi-martingale decomposition of the coordinate pro-
cesses X' and their products X*X7, we obtain that for f € C; 2 the martingale part of
f(t, X;) in (MP) is given by the stochastic integral

t
vV 2V/ V (s, Xs)1{s>71dBs,
0
with respect to a Brownian motion B defined on some extension of the canonical space.
Consequently, on the random interval [0, 7], the martingales in (MP) are null and X; = X.

Remark 2.8 [t follows that the second condition in (MP) is equivalent to the fact that

t t
00 = £0.X0) = [ s Xt = [ 076X+ K 4 5 (XOVH6, X oy
(1)

is a continuous P-martingale with respect to (Fy) for all f € C’I}’2.



3 The mollified problem

In a first stage we deal with a regularized version of the kernel K. Let ¢ : R> — R be a
bounded and smooth function with bounded derivatives, satisfying ||¢|l1 = 1. For e > 0 we
define . (z) = 8%4,0(%), and

K. =Kxp..

The function K. is bounded and smooth, and has bounded derivatives. We denote by M,
its sup-norm on R? and by L. a Lipschitz constant, that respectively behave like E% and E%
when ¢ << 1. Notice that div K. = (div K) % p. = 0.

In this section, we fix the parameter €, and we consider the mollified equation obtained
from Equation (2) by replacing K by K.:

%+(K5*U-V)U:VAU+9. (12)

We will adapt the usual McKean-Vlasov approach to give a probabilistic interpretation to
(12) and construct some approximating stochastic particle system.

3.1 The nonlinear process.

Consider on some given probability space a 2-dimensional Brownian motion B and a R xR?
valued random variable (7, X) independent of B with law Fp.

Theorem 3.1 There is existence and uniqueness, trajectorial and in law, for the following
nonlinear stochastic differential equation in the sense of McKean

t t
X5 = Xo+ \/21// lesrdB, + / K. % P5(X5)1y5,ds, >0, (13)
0 0
under the conditions: law(t, Xo) = Py and law(t, X¢) = P*.

Proof : The proofis easily adapted from Theorem 1.1 in [20]. Denote by dr the Kantorovich-
Wasserstein distance on Cp

dr(QY, Q%) = inf { /(c . [ sup (|z(t) —y(@)| A1) + |a— ﬁ@ (do, dx, df, dy) :

t€[0,T]

II has marginal laws Q' and QQ},

and by C% the closed subspace C% = {Q € Cr : Qo(r,Xo)"! = Py}. Define a mapping
O : C% — CY associating with Q the law ©(Q) of the unique solution of

X2 = X+ \/ﬁ/ot 1,>,dBs + /Ot K. % Qy(XD) 145 ds.
By trajectorial considerations, one can show that for each ¢t < T,
1(6(@),0(@) < (1) [ (@ @ds
(with d;(Q', @?) the distance between the projections of Q! and Q? to C;). We deduce the

existence of a unique fixed point for © and hence a unique solution in law. The trajectorial
statement then follows from the Lipschitz property of K. (see [20] for details).



il

It will be convenient to introduce the stochastic flow associated with the nonlinear process
(13), that is, the three parameter process

€ (x) = 2+ V2u(By - /K « PE(EE, (2))dr (14)

The function (s,z) — K. % P(z) is continuous, and Lipschitz continuous in z uniformly in
time, as well as all its spatial derivatives. This implies that there is a continuous version
(s,t,2) + & () such that x + &5, () is continuously differentiable for all (s,t) (cf. [14]).
We denote by

Gé(s,x;t,y), (s,z,t,y) € Ry xR s <t

the density of &5 ,(x), which is a continuous function of (s, z,t,y) (see [10]).
Since X; = Xy for all ¢ < 7, we have that

Xi =& (Xo)lpzry + Xolgery

Hence, conditioning with respect to (7, Xg), we obtain for bounded functions f that

[f th( ))1{t>7}] + FE [f(XO)]-{t<T}]

/ /R2 Y)G= (s, 3y, t)dyPo(ds, dx) / RQf ) Py(ds, dz),
= |, Fayin(aydz + /0 /R 2 [ [ ey dy] P
+ /t ' RQf(x)gs(x)dmds,

where we have introduced the notation

(e — @)
ol +TgTr

o lgs(a)]

and gs(x)= ——F——.
) = ool + Tolir

By Fubini’s theorem, we deduce that for each ¢ €]0,T], X; has a bi-measurable density

(t,y) — pi(y).

Similarly, we have
f@) P (dx) =EB[f (£ 4(X0))h(T, X0)11r<iy] + E[f(Xo0)h(r, X0) 1754
= [ t@wtes+ [ [ 1] et g i
T
+/t - f(x)gs(x)dxds

and then, Pf(dy) has a bi-measurable density family, that we denote by

(t,y) = p; ().



Remark 3.2 By construction, we obtain

sup sup |[|p;llr < [Jwollr + [lglliz (15)
>0 t€[0,T]

We deduce the following result about Equation (12).

Corollary 3.3 The function pf is the unique weak solution of Equation (12) in the space
L*>([0,T],L").

Proof: We write Itd’s formula for ¢(t, X;) and proceed as in Lemma 2.7 (boundedness of
K. provides us now an analogous integrability condition as required therein.) We obtain
that pf € L>([0,T], L') is a solution of the weak McKean-Vlasov type equation

/R (t, )i () = /]R 9(0,yun()dr + /O [ ols.0)gn(w)da ds

t 0¢(s, 1) . ~
o [P s + oo, e
(16)

for all ¢ € Cp*([0,T] x R?).
Let us now prove uniqueness. Using boundedness of K. and proceeding as in Remark 2.4,
we check that % is a solution in L>°([0,T7], L') of the mollified mild equation

55(2) = GY » wola /Gts*gs( ds+/vats (K. 9)5) (@) ds. (1)

If v is another solution of (17), we obtain, thanks to Lemma 2.2 with [ = co and m = 1
that

t
- 1
Hpi—vt\lléC(&‘)/(t—S) 2|75 — vsllds
0

and conclude with Lemma 1.2.

3.2 Stochastic particle approximations

We now define an interacting particle system which is naturally associated with the non-
linear process studied above. The system takes into account the random space-time births.
Its pathwise existence and uniqueness can be proved by adapting standard arguments.

Definition 3.4 Consider a sequence (B");cn of independent Brownian motions on R? and
a sequence of independent variables (1%, X{)ien with values in [0, T] x R? distributed accord-
ing to Py, and independent of the Brownian motions. For a fized € > 0, for each n € N*,
let us consider the interacting processes defined for 1 < i <mn by

t
ins X0+ \/21// 1{5>T’L}dB —|—/ 1{8>T1}K *Mna(Xlna)dS (18)

where

. 1
neZnZhT X 1{S>T3}6 jns
7j=1



s the weighted empirical measure of the system at time s and

K. % i (2 Zh (7, X)L (g Ko (2 — XI™9).
j 1

Observe that particles either have birth at time 0 or at a random time, and evolve as soon
as they are born as diffusive particles that interact following a mean field depending on
the parameter €. We introduce a coupling between these interacting processes and some
independent copies of the limiting process defined in (13), as follows:

Definition 3.5 Fori > 1, we define X“¢ by
_ . t . t [
XZ’a = Xé + vV 2V/ l{szTi}de +/ 1{5271}K5 * ﬁi(X;’a)dS (19)
0 0
We have the following estimates for each € > 0.

Proposition 3.6 There exist positive constants Cp,Co such that for alln e N, 1 <i<n
and € €0, 1],

) < D€ exp(Calllunll + gllur) € 2)T).

NG

E(sup | X" — X}*
1<T
(20)

Proof. The proof is an adaptation of the proof of Proposition 2.2 in [11]. We have

Sup X, — X3 < / Z\Ihlloo (137 = X3 + X0 = X39)) ds

s<t

/ Zh 1 XY KX — X39) — K. = (5(X59)| ds.

Since the sequence (77, X*™¢ X*€); <<, is exchangeable,
t }
Bsup | X1 — X5 < 2|[hllo LE/ Bsup| X — Xi¥|| ds
s<t 0 u<s -
29— 1/2

/ Zh 7'] Xj X” nga) — K, * ﬁi(Xé’E) ds

The expectation in the last term above is equal to -5 times a double sum of terms

B | (! XRRIE - X59) = Ko ) (H¥ XK - X59) = Ko 5629 (2)
k,j =1...n. Observe that for each x € R? the random variable h(77, X, ) K.(x — X1°) —

K. * p5(x) is centered, from definition of 5. By independence of (7, X§")1<m<n, we

deduce that if j # k,

g [h(Tja X(J)‘)KE(X;"E - Xgﬁ) - KE * ﬁi(X;’E) (Ti, X?E)’ (Tka X;c,s) = 07

10



2

and consequently, the expression (21) vanishes. Otherwise, it is bounded by 2M2|h|2.

Thus, we obtain that

2t M |7/l
Voo

Remembering that ||h||ec = ||wo|l1 + ||g|l1,7, we conclude with Gronwall’s lemma that

t
E |sup | X — X;ﬂ] < 2||h||ooL€/ E [sup|X§"’5 — X2¢|| ds+
0 s<t

s<t

. . CM,
E(51<1$ | X" = X)) < = exp(2([|woll1 + [lgll,7)LT).
t<

Lovn
[

Remark 3.7 Since the function h is bounded, we can easily deduce from the previous the-
orem that for all continuous bounded f : R> — R and ¢ > 0,

— 0

Bl - [ fpas

when n — o0.

3.3 Density estimates

Constructing the nonlinear process gave us existence for each € > 0 of a weak solution of
(12). This probabilistic approach has naturally provided uniform (in ¢) L' estimates for the
solution. In order to make ¢ — 0, and because of the bad behavior of K in the space L!,
it will be necessary to additionally obtain uniform LP estimates for some p strictly greater
than 1. The stochastic flow will be the fundamental tool for this purpose.

The diffusion coefficient in (14) being constant, the following “stochastic version” of Liou-
ville’s theorem can be proven in a similar way as the standard one (e.g. [8] Ch. 1).

Lemma 3.8 Let J&5, = |det(V.£5,)| be the Jacobian of the function &, : R? — R?. Then

t
JE () = 1+ / div | K.+ PE(E,(2))| J€5 ar.
Since div K. * Pf(ﬁ;r(ﬂs)) = 0 we conclude that for all (s,t,z),

JE () = 1.

Lemma 3.9 Let p° and p° be respectively the family of densities of X under P¢ and the
family of weighted densities associated with P® through (10). Let p € [1,00] and assume
that wy € LP and g € L*([0,T], LP). Then, we have

t
i) NAilly < II’tl)oller/0 lgsllp ds

T

[|wollp + fo gsllp ds
T

Jwollr + fy llgslh ds

i) el <
for alle >0 and t € [0,T].

11



Proof: Consider a fixed function vy € D and t > 0. By the Feynman-Kac formula, the
function ¢'(s,z) := E(1(&,(x))) is the unique solution of the Cauchy problem

d¢(5 ) 4 vAG(s,x) + K * p5(x)Vep(s,z) =0 forall (s,2) € [0,¢[xR?
ot x) =1

Replacing ¢! in the weak equation (16) and using Fubini’s theorem, we obtain

/ Y(x)pi(x)de = - @' (0, z)wo(z)dx + /Ot /R2 #'(s,7)gs(x)dz ds

& ([ W& ) do)+ [ [ pEwnw]d)
and so

‘/RZ 1/’(@)5?(%)5553‘ <FE [Hw(fé,t(- ))Hp*] Hwo!!p+/0 E [W(&Zt( ))Hp*] ”gsdeS~

Thanks to Lemma 3.8, we conclude that

t
| [ ies] < 1l (ol + [ loalds).

which proves i). To prove ii), define a sub-probability density pi by fRQ Y(x)pi(x)de =
E(p(X§)1y>ry). Writing 1t6’s formula for f(¢, Xf), multiplying by 1p>.) and taking
expectations, we check that

[ o= [ ownm@as [ [ os.na.wa i
w [ [P s unim) ¢ i)Vt o

We deduce as previously that

[9]]p+ !
1/} d S w —|—/ Js ds ).
‘/ | ”wOHl + Hg”l,T H OHP 0 || ||p

The desired estimate for p; follows from here, since E((X{)1<ry) = E(¥(Xo)lpery) =

S Jie @) et e ds. -

In [6], Busnello also relied on the stochastic flow to obtain uniform in time estimates for
some solutions to the vortex equation. However, her argument needs regularity of the initial
condition and does not consider external force fields.

4 L'NL? data: existence, uniqueness and pathwise approxi-
mation

Our goal now is to make € go to 0. The singular kernel K has a bad behavior in the space
L'. However, it satisfies the following fundamental continuity properties.

12



Lemma 4.1 Let p € (1,2) and % = % — % For each f € LP and © € R? the integral

K x f(x) is absolutely convergent. Furthermore, there is a constant Cp 4 > 0 such that
i)
1K * fllg < Cpgll fllp forall € f e LP. (22)

i)
1K * fllwre < Cpgll fllwre — forall € f e WHP (23)

Proof: The absolute convergence of K * f(z), and statement ) follow from the analogous
results for the Riesz transform

f(y)
feLP»—»/R2 |x_y|dyeL4(dx), (24)

(cf. Theorem 1, Ch. 5 in Stein [19]). To prove i), by using the latter and a density
argument, it is enough to check that the operator K+ commutes with derivatives when
acting on D. But this follows by taking derivatives under the integral sign by dominated
convergence.

il

Remark 4.2 Lemma 4.1 with the same constants applies to each mollified kernel K.

We now introduce the adequate spaces to work in. For measurable w : [0, 7] x R? — R and
real numbers p € [1,00] and r > p we introduce the norms

* Jlwllopr = sup [wellp
0<t<T

1_1
o lwlopry = sw {2 luill, }.
0<t<T
and we denote the associated Banach spaces respectively by
Fopr and  For (1)

For analytical purposes, we will treat in a unified way the mollified and non-mollified
equations. We write Ky = K, and for each ¢ > 0, we define the bilinear operator B¢ on
measurable functions v, w : [0, 7] x R? — R, by

B (v, w)(t,x) = /0 - VG _(x—y) K xvs(y)ws(y)dy ds (25)

Accordingly, we also write B = B°.
Finally, we denote by Wy the function

t
Wo(t,x) = G *wo(x) + / GY_, * gs(x)ds.
0
Lemma 4.3 i) Let p € [1,00] and assume wy € LP and g € Fy,, 7. Then, we have

Wo € For(rypy  for allr > p.

13



ii) For each r >4 3, UV, w € Fo,r, and each t <T', we have
Sup [1Ke ¥ v@w®)|| 2 < Cllo(@)[l[[w (@)l (26)
e>
iii) If 3<p<2,p<r<2andy 27" <r' < 5%, then B® : (Fo,r,(T;p))2 — Fo o (1) 15 well
defined for each € > 0, and

sup 18° (v, w)llo.r (7p) < CONVNor ) lwllor(7:p)
e>

Jor allv,w € Fy, (1.p)-

i) If% <p<2,wy € LP and g € Fyp 1, we have for all v € [p, QZTPP)

< oQ.

ip)

Proof : Part i) follows from Lemma 2.2, and the estimate

H/G *gsds

for some constant C(p,r) > 0 since 1/p < 1/r + 1.

< C(p,r)t' T v ( sup ”gt||p> (27)

te(0,7)

it) Notice that 1 < £2=. Equation (26) is immediately obtained from Lemma 4.1, Remark
4.2 and Holder’s inequality.

iti) By (26), noticing that 1 < 2= <1/ and by Lemma 2.2 and Lemma 4.1, we have

12
o

|vs]|r|lws |l ds

182 (v, ). <C / (t-s)

1_2 2. 2 28
<Clollorirplellon ) / (t—s)7 Pt hds (28)

—ot'ti Ty

o lwllor,r:p)

with constants that do not depend on £ > 0. In the last step we have used the fact that

1

T > —= because r<2<g . The statement follows.

i) By Lemma 3.9, we have

sup [|5°lo,p,r < o0
e>0

Observe that 52 p > 2. We define p; := ;ffp € (p,2) and apply iii) to r = p and 7’ = py

which yields supgzo 15l0,p1,(7p) < 00, considering Equation (17) and i). We now apply iii)
to r = p; and some 1’ € [42_19;1, o) = [P, ;Tpp) and conclude in a similar way. []

Throughout the sequel, we make following type of assumption on the initial condition and
the external field:

(Hp):
e wy € LP(R?) and

14



® gc FO,p,T-

Remark 4.4 In view of the continuity property of the Biot-Savart operator, and of part
iii) of the previous lemma, we will always consider

4
p=1lorpe [5,2).

4.1 Convergence of the mollified solutions for L' N L? data

For technical reasons, we will make a particular choice of approximating kernels K.(z) =
K x p-(x). We will assume that ¢.(z) = E%go(g), with ¢ a cutoff function with radial
symmetry. The following function has been given by Raviart [18] in a general context of
approximations, and proposed by Bossy [1] for a numerical study of the vortex algorithm:

2
o) = 2277

Cor(l+ )Y r=lel

It is proven in [17] that in this case, we have

B 4et + (r? + 32)r?

Ke(2) 27 (r2 + £2)3

(=2, 21). (29)
Lemma 4.5 For each | € [1,2) we have

|K. — K|, < Ce'T
where the constant C depends only on [.

Proof. We have

Then, for [ > 1,

4 +o0 2 2\1
€ (re—e®)
K.- K|l < —— a7 @
H € Hl (271_)1_1/0 (T2—|—52)3l7“l_1 r
< 52—11/Jroo L_l)lda
— (Qﬂ)lfl 0 (a2+1)3lal71
< Ce forl < 2.

il

Proposition 4.6 Assume that (Hp) holds, with p € [%,2). Then, for any l € (1,2) and
e > ¢’ >0 we have

- ! 2—-1
sup [|p; — pi llp < Cre
t<T

for some positive constant C;. We deduce that the sequence p¢ converges, when € tends to
0, to some function w € Fy 1 solving the mild vortex equation (7), and

- 2-1
sup [|p; — wellp < Cre 7. (30)
t<T

15



Proof: By Lemma 4.5, we get for 1 < < 2 that
IK. — K|, < CT.

In view of (17), Lemma 2.2 and Lemma 4.3, we have, for ¢t < T,

t
15— 71l < / IVGY % (Ko % 52)55 — (Koo % 55 )75 | ds

t _1 o A/
< c/<t—s> N 707 — (K 507 | 2o s
i :
t 1 o o
< 0 [= o) I 50— (K A s,
N ) = (K 50500 2+ (e )5 = 7)) 22 ) s
. . t _1 1.1
< ClFloprIKe — Kl lomcrm /0 (t—s) b5t rds

’ t _1 !
(e e N R LS (31)

with r € (p, ffpp) given by the relation % — % = % + % — 1. The last inequality follows from
Young’s inequality for the first term and from (26) for the last two terms. Notice that
% — % + 1> 0, and so Lemmas 4.3 iv) and Lemma 4.5 finally imply that

e . 2.1 . t L
17 = 71, < Csup IF° T( 00 [l +C [ (6= 57155 = I, ds) (32)
ISy 15)

which together with Lemma 1.2 implies that
~c ~c’ 2=
sup [|p; — p; llp < Ce T .
t<T

The sequence is hence Cauchy in Fp 7. By similar arguments it is immediate to see that
its limit w € Fy,, 1 is a solution of (7) .

il

We finally obtain the following existence and uniqueness result:

Theorem 4.7 Assume (Hy) and (Hp) withp € [%, 2). Then, the mild vortex equation with
external force field (7) has a unique solution w in the space Fop,r N Fo171. The solution
satisfies

t
[w(®)]lp < IIUJoHer/0 gslpds- (33)

Proof: Existence of a solution w € Fp, 7 has been proved in Proposition 4.6. The upper-
bound (33) follows from the convergence statement therein and from Lemma 3.9.

Let us check that w € Fp1 7. Consider the sequence defined by v = 1, v,41 = ﬁ%,
which is strictly increasing, converges to 2 and satisfies v, = 42_7;7;111. Take N € N such
that yv < p < yn+1. We have vy € [ffpp,p], and so from Lemma 4.3 iii) and the fact that

Wy € Fyqy,r we deduce that w € Fo 4, 7. Since furthermore Wy € Fy,,_, 7, we obtain
that w € Fy,,_, 7. We iterate this argument IV — 1 times and conclude that w € Fo 1 7.

16



Finally, if w,w’ € Fy, r are two solutions of (17), as in the proof of Lemma 4.3, i) (with
p=r=r'") we get

[wr = willp, < C (Jlwl

5,7 + [Jw

t 1
Nogr) [ (=), =l s
0

We conclude uniqueness by Lemma 1.2.

In the sequel, the family of equations

wi (z) = GY * wo(x / GY_, * gs(x) ds +/ VG_g x [(Ke x wl)ws] (x) ds, (34)

with € > 0, will be refereed as the mollified mild equations. Notice that with this notation,
Equation (34) is Equation (7) if ¢ = 0 and Equation (17) if € > 0.

Remark 4.8 With similar arguments as in Theorem 4.7, we can also prove uniqueness for

each of the mollified mild equations (34) in the space Fop1, p € [%,2). We deduce that

under the assumptions of Theorem 4.7, for each € > 0 Equation (34) has a unique solution
w® € Fypr N Fo1r, given by w® = 5 if e >0, or by w® = w.
4.2 Regularity estimates

We have so far proved existence and uniqueness of a solution w of the vortex equation
in Fy, 1 N Fo1r. But we still need minimal regularity properties of w and K * w (such
as boundedness of the latter) in order to construct a solution of the nonlinear martingale
problem.

Therefore, we now prove some uniform (in €) regularity properties for functions p°. These
results will imply strong existence and uniqueness for the limiting process and moreover,
under assumptions (Hy) and (Hp), pathwise convergence of the mollified processes when
€ tends to 0.

For T > 0 and r > p we introduce some additional norms

11 11 1y
o lollrirm = swp {6 ol + 634077V

1
o Iolipr =Wl iz = sup {lvelly + 22wl |
0<t<T
and the associated Banach spaces
Flﬂn’(T;p) and F17p7T'

Lemma 4.9 i) Assume (Hp) with § < p < 2. Then we have

2
W[) € Fl,T,(T;p) fOT’ all r € [p, ﬂ)

i) If% <p<2,p<r<2and 42—_7"7, <7’ < 55, then B® : (Fl,r,(T;p))2 — Fy o (1) 18 well
defined for each € > 0 and

sup 185 (v, )1 (1) < Cllvlt e cip) el (ip)-
e>

17



1

1
Proof: i) For p € [1,2) the function ¢ — ¢ 277~ # is integrable in 0 if and only if r < 2 p
Taking the gradient of G}_; * gs under the time integral and using Lemma 2.2 we obtain

t
HV (/ GY_, * gs ds)
0

for some constant C’(p,r) > 0, which implies that Wy € F} . (1,)-
i1) In view of Remark 4.2, it is enough to check the continuity properties for B. If v,u €

[NIE

1_1
< C'(p,r)t2 e ( sup Hgth> (35)
r te[0,7]

Fy . (1,p) the function (K * v;)u; belongs to Wl’%, and so by integration by parts,
t
B.w(ta) = [ [ 61 e =) < 0)w) - Tuslo)dy ds
(recall that div K «u = 0). Next, for any ¢ € D it holds that
t
| [ cr e = o s vl Fust)lde dy ds
0 J(R?)2

! 12,1 2 2 1
< Cuwu(r’)*|||Um0,r,(T;p)|||u’”1,r,(T;p)/0 (t—s)7 72577 r 2ds < oo,

where (r')* is the conjugate of /. Thus, by using Fubini’s Theorem and integration by
parts,

B (o) 2 o = = [ e o) ) )Ty
X R2)2 L

(i = 1,2) from where we deduce that

1.2 2_2_1
7

IVB(v, w)e|lr < Cllollorrpyllelr ,p)/ (t—s)7 rsr v 2ds
1pl-2
= Cllvllo,plullirrpyt2 7 >
we use here the fact that 2_2_ 1+ 1) From this estimate and (28) we conclude 7).
p 2

il

Remark 4.10 By the previous lemma, and since

Equation (34) in the space Iy 1, with % < p <2, is equivalent to the abstract equation
w® = Wy + B (w®, w). (36)

To obtain the required additional regularity, we will prove a local existence result of regular
mild solutions. We need the following lemma (see e.g. Cannone [7], Ch.1).

18



Lemma 4.11 Let (F,| -||) be a Banach space, A € R a positive constant and B : F? — F
a continuous bilinear operator such that

IB(x1, x2)ll < Aflxall lIxzll
for allxy,x9 € F. Ify € F is such that 4\|y|| < 1, there exists a unique solution xz € F of
x =y + B(x,x)
1—y/1-4A]ly|l
— o <2yl

in the centered ball of radius Ry := 5

Proposition 4.12 Let p € [%,2). There is a constant A\, > 0 independent of ¢ > 0 such
that for all 0 > 0 and wo € LP, g € Fy g satisfying

1—1
0" ([lwollp +bllg

lo.p.6) < Ap,

FEquations (34) with e > 0, have a unique solution in Fy ¢ such that ||w® |1 p0 < 2[|Woll1p6-

Proof: From Lemma 4.9 i) (with r = r' = p/ = p), the operators B : (Fy ,9)?> — Fi 0
are continuous with norm bounded by 67 times a constant C (p) > 0 not depending on 6
or € > 0. Furthermore, from the proofs of Lemma 2.2 and Lemmas 4.3 i) and 4.9 i) there
is C(p) > 0 such that )

IWoll1.p.0 < C(p) (llwollp + Ollgllop.e) -
Hence, by the previous lemma, a solution w € F} p ¢ to the abstract equation (36) exists as
soon as

_1 ~
4C(p)8" " (lwolly +Bllgllo.pe) C(p) < 1.
[

Theorem 4.13 Assume (Hy) and (Hp) with p € [3,2) and let w® € Fy,rNFo1r, € >0,
be the solution of (34).

i) We have
sup [Jw |y pr < oo
e>0

ii) For each r € [p, 22%’1))

sup [lw® ”|1,r,(T;p) < 0.
e>0

Proof: i) We follow a similar argument as in Lemma 4.4 in [9] to deal with the bad
behavior of w® at time 0. Firstly, we prove that for each r € [0,T], the shifted function
(s,2) — wi, () coincides on some small time interval [0,6p] with a function in Fi .
By the semigroup property of G and the estimates of Lemma 2.2, it is checked that

t t
Wty o(z) = G sl () + /0 Gy wgutr(z) ds+ /0 VG (Ko * wfy Jut ] (2) ds, (37)

for all t € (0,7 — r]. We write We) (t,x) = GY x we(x) + fg GY_g % gs4r(z) ds. Then, as in

the proof of Proposition 4.12 and with the same constant C(p), we have

W&l 0 < CW) (lwsllp + Ollg+rllo.p0)

< C(p) (Ilwollp + 2T llgllo.p,7)

(38)
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for all # € [0,T — r], the last inequality due to Lemma 3.9.
Let A, > 0 be the constant given in Proposition 4.12, and take 6y € [0, 7] such that

1 1
Oy " (llwollp + 2T llgllop,r) < Ap-

Then, for each r € [0,T] such that 6y < T — r, we have

-

1-1 1-1

0y * (lwrllp + Oollg+rllopes) < by " (lwollp + 2T Ngllopr) < Ap,

and consequently, by Proposition 4.12, each equation (37) has a solution, say v‘(':r), in the
space F ,g,. Since uniqueness holds for (37) in the space Fj , 4, A(T—r) for each 7, we have
w$+,(-) = Ufr) € Fl,p,eo/\(T—r) and

lwrs. (llip0 < 2IW G 11,60, (39)

also by Proposition 4.12. This clearly implies that w§ € WP for strictly positive .

. . 0
Notice now that, by choosing ry := k%, k € {0... [ 11 we get wy, 4y = wrk % for

telo, —0] and ke {1...,] f]} Consequently, for such ¢ and k we have

1 - 1 Oy, 1
(i + OV, ollp < 65 e+ 03¢+ BVl

T\ 2
<o (I W b v 69

T\
<o (9) (lwolly + 2T llgllop.r)

the last inequality by (38). This and (39) with » = 0 yield the desired upper bound for w®.
Finally, using Lemma 4.9, the proof of i) is done in a similar way as in Lemma 4.3 iv).
[

Corollary 4.14 Denote by C the space of Hélder continuous functions R> — R? of index
€ (0,1). Under the assumptions of Theorem 4.13, we have

)

/ 1
sup sup { t2 <||K * Wy || oo + || K e * wi || 2_7)} <o
€20 te[0,T)

i) for all r € (2, ;Tpp),

1 1 1
sup sup {tf_?+5 <HVK€ kWi || oo + ||V K * wi] 172)} < 0.
>0 t€[0,7] ¢

Proof: Recall that for each m € (2,00, the Sobolev space W1™(R?) is continuously
embedded into L®(R?)NC - (see e.g. [4 ]) We obtain part ¢) using the equi-continuity

of the family of operators {K. : WP — WQ’Q’ }eso for p € (1,2), the fact that the w®’s
are uniformly bounded in Fy, 7, and the refereed embedding result for m = q.
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To prove i) we use the following fact (see Bertozzi and Majda [3], p.76 for a proof): each
distributional derivative of the velocity field K * w is obtained by applying some singular
integral operator on w .

As a consequence, for each i,j € {1,2}, the mapping f — a%in x f defines a continuous
operator L” — L" for all » € (1,00). There exists moreover a homogeneous function
m; ; : R — R of degree 0 such that for f € L?, the following relation on Fourier transforms
holds

833‘i
with F(m; ;) a bounded function (see [19] Ch. 1 for all these facts). This implies that

o [0 P of
— | =—K; = K — k=12
Ozy, <8:L'i J ¥ f) Ox; ( J ¥ O:Ek> ’ ’

for all f € W12, and then for all f € W' and all € (1,00) by density and continuity.
By the previous commutation relation and continuity of %Kj* in L", the operators

f< O K, f> (€) = Flmig) F(F)(E),

%K PR WL — WL are continuous. Moreover, it is not hard to check that the Fourier
transform of %(Ka) j equals that of %K ; times some function in L> with norm smaller
than 1. It follows that the operators %(Ke)j* : WL — WL are equi-continuous in & > 0.

We conclude i) using the latter, the uniform estimate for w® in Fy . (7, when r € (2 22)

’ 2= p
and the above mentioned embedding with m = r.

il

4.3 Pathwise convergence of the mollified processes

Definition 4.15 We denote by Py 1 the space of probability measures on Cp = [0,T] x
C([0,T),R?) such that for each t € [0,T], the signed measure P; has a density p; with
respect to the Lebesgue measure and p € Fy 1 N Fo17.

Theorem 4.16 Assume that (Hy) and (Hp) hold with p € [3,2). Consider a R%-Brownian
motion B and a random variable (1, Xo) with values in [0, T] x R? and distributed according
to Py, independent of the Brownian motion.

a) There exists in the class Py a unique solution P to the nonlinear martingale problem
(MP). The corresponding function p is equal to the unique solution w of the mild
equation (7) in the space Fo, 1 N Fo17.

b) There is a unique pathwise solution ((T, X), P) of the nonlinear stochastic differential
equation (E):

i) The law P of (1, X) belongs to Ppr and Pi(dx) = py(z)dx

t t
ZZ) Xi=Xo+V 21// 1{827}dBS + / 1{327—}K * ﬁs(Xs)dS . (40)
0 0

c) For each € > 0, let X be the mollified nonlinear processes constructed in the same
probability space as B and (1, Xo). Then, X¢ converges in Ly, := {Y, E(sup;<r |Y4]) <
+oo} to X, with moreover

< 2(1-1)
E| sup|X; — Xy| ) <C(p,r)er
t<T

for each r € (p, 22—_pp).
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Proof: Part a) easily follows from b). Indeed, the fact that a solution of (E) is a solution
of the nonlinear martingale problem (MP) is easily verified by writing It6’s formula for
f(t, X;) and using Remark 2.8. With Lemma 2.7 we deduce that p is a solution of the
weak equation. To check that it is also a mild solution, observe that p belongs to F, i by

interpolation. Therefore, K * p € Fy 47 and

T
[ 1 s )i ds < o0 (41)
0 R2

by Hélder’s inequality and Lemma 4.1. We conclude by Remark 2.4 that p is a mild solution
in FO,ILT‘

For the rest of the proof, we proceed in several steps.

Pathwise uniqueness for (E).

Consider, given B and (7, Xp), two pathwise solutions (7,Z') and (7, Z2) of (E). We
respectively denote by P! and P? the laws of (1, Z') and (7, Z?) which belong to P, 1. We
deduce as previously that ' = p*> = w. Hence (7, Z!) and (7, Z?) are both solutions of a
stochastic differential equation (E") defined like (E), but with the known drift coefficient
K % w; instead of K * . or K 52 in (40).

Then, using the Lipschitz property of K * w obtained in Corollary 4.14, we get for all

re(2,5%) and t <T that

u
E(sup |zl - 7%) = E<Sup / (K*ws(Z;)K*ws(Zf))ds>
u<t u<t 0
Paaa L o
< /sr r 2E(sup|Z, — Z;|)ds. (42)
0 u<s

By Gronwall’s lemma, we deduce that E(sup,<r|Z} — Z?|) = 0 i.e. the processes Z' and
Z? are indistinguishable.

Pathwise convergence

We will now prove that the sequence (X¢) is Cauchy in L, and that it converges as ¢
tends to 0 to a process X, such that (7, X) is solution of the nonlinear stochastic differential
equation (E).

We denote as usual by g the number defined by % = % — % We choose r € (p, %) and
l € (1,2) such that 11) — % = % = % + % — 1. We firstly prove the following estimate: for each
e>e >0,

K. % pS(XE) — Ko * 5 (XE)

A

Write q% =1- % and observe that ¢* € [1, p] so that by Lemma 3.9,

ds) < CeT. (43)

sup [|p°[lo,g+,7 < oo
e>0
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Therefore, the left hand side of (43) writes
/ BIK. + 52(XE) — Kur % 55 (X7) ds—/ [ VK i) = Ko 5 @)l ) s
0
< / 1Kz % 55 = Ko x5 gl ol ds
0
T !
<C [ 1K~ Ko 7 ds
0

T
<c / V5o 5 55— Koo % 5llg + 1Ko % 55 — Koo % 5 lgds
0

By Young’s inequality, Lemma 4.5, and Lemma 4.3 iv) the first term in the last integral is
bounded by

" PRV 2111
1K — Ko llllpzllr < Ce T |Ipillr < CeT e,
On the other hand by Lemma 4.1 and Proposition 4.6 we get that the second term is

bounded by C=*T". From these estimates, (43) follows since 1 — % +1>0.
Now, for u < T, we have

u
E(sup x5 - Xs/r> < E( [ e e - K ﬁi'(Xi/)ldS>
0

v<u
<[ (E|K RN = Ko 5 XD+ BV 50X — Koo (X)) s
< T / sTTP IR B(sup |X; - X2 |)ds (44)
by (43) and Corollary 4.14. We conclude by Gronwall’s Lemma (since 2 — % — 1> 1) that
E<sup | X7 — Xf/|> < CeT. (45)
t<T

The sequence (X¢) is hence Cauchy in the space Ly := {Y : E(supycjoq|Yil) < +00}.

1 1
Thus, it converges in LIT at speed C(p, 7")52(5_?), to some process X™. The final step is
Identification of the limit as a solution of (E)

Taking ¢’ = 0 in the previous estimates easily leads to the fact that (7, X™) is solution of

the stochastic differential equation
t t
th = XO + V 21// 1{327}st —l—/ 1{327_}}( * ws(X;”)ds (46)
0 0

Denote by PY the law of X%. To finish the proof we just need to verify that X% is a
solution of the nonlinear stochastic differential equation (E). This amounts to check that

each of the signed measures th has a density which is equal to w. We have, for each f € D
and t € [0, 7] that

2)de — (f)] — B (XE)h(r, Xo)Lgrey) — E(F(XI)h(T Xo) L)
< C|VfllE|X; — X{’| = 0 when e — 0

and since [go f(2)pf(x)dx — [go f(x)wi(x)dr from Proposition 4.6, this concludes the
proof.

il
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4.4 The stochastic vortex method

From the results in the previous sections we readily deduce

Corollary 4.17 Let T > 0 and assume that (Hy) and (Hp) hold with p € [%, 2). Consider
a sequence €, — 0 in such way that
016n
Vn

when n — oo, where C1 and Co are the positive constants given in Proposition 3.6.
With the notation (3.4), we define for alln € N and i = 1...n the system of particles

exp(Ca([[woll1 + llgll,r)(e5*)T) — 0

Zm - Xin,en

and consider on the same probability space the sequence of i.i.d processes (X%);en, with X*
the unique strong solution of

i) the law P of (1%, X") belongs to Py and Py(dx) = py(x)dx

t t
’LZ) XZ = Xé + \/21//0 ]_{SZT«;}dB; +/0 1{527i}K*ﬁs(X;)d8 . (47)

Then, for all k € N and any r € (p, ;Tpp), we have

k
i i 2(1*1) Clgn -2
E | sup |Zi" — X| | <kCep? 7 +k exp(Ca(||woll1 + ||g]1,7)(e,“)T) — 0
(om So1zte - 51 12 o Col ol + 1o

(the constant C depending on p,r and T).

Corollary 4.18 Consider a €]0, 5[ and the sequence (e,,) given by

1
_ (Cz\lh\looT> 2
eni=——m ) ,
alnn

with a constant Co > 0 as in Corollary 4.17. Consider moreover the weighted empirical
process

o L, i i
s o= ﬁ Zl h(TjaX(JJ)l{SZTj}(SZgn
]:
and the approximate velocity field
~n 1 ¢ j j in
Ko, % fip™(2) = = > (1), X)Lz ri Ke, (2 = Z07).

n -«
J=1

Then, under the assumptions of Theorem 4.16, for alll € (1,2) we have

(alnn)=

1 1
supE<sup t%\Kgn*ﬂ?’%(a:)—u(t,x)O sc*(z,a,T)( — + )

zEeR2 t€[0,7 na2"¢
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Proof: Firstly we prove that for all [ € (1,2), for some constant C(7T') depending on [ and
T it holds that for p € [4/3,2),

sup 2 |[ws — wy||yie < C(T)e T . (48)
t<T

From Lemma 4.9 7)), for € > 0 the function Vw® satisfies

0 0
L) =Lt )+ [ G s
o0x; o0x;
. (49)
+ %( v~ y)(Kz 5 uf)(y) - Vui(y)dy ds
R2 €Ty
since divK. = 0. Proceeding as in Proposition 4.6, we deduce for r € (p, ;Tpp) given by

—3=14+21—1that

S

t
|Vu§ - Vi, < C / (t )77 (| (e % w§) Ve, — (% w§) Vo | 2
0 -p
FICK * w§) Vs = (K 5 w0 Vs 2o + | 5 wy) (Vg = Vg 2, ) ds
—p —p

IN

t
Clulor | = Keldlolh e [ (6= 5)7757 3 das

t 11
Ol pr / (t— ) 35 Bl — wyll, ds
0
¢ 1
Cllwlopr / (t — ) H Vs — V]l ds. (50)
0

Notice that = — % + % > 0. With help of Lemma 1.1, Lemma 4.5 and Proposition 4.6 (since
p° = ws), we deduce for all 8 < T and t < 6 that

2.1 -1 1 _1
t%HVw;f — Vul, < Ce Tt p T 4 0Tt 7r + 1750 {supséHVwi — szHp} ,
s<6
where all powers of ¢ are non negative. It follows that

{sup s%HVwi — VwSHp} < C(T)eQTil Lo {sup S%HVwi — VwSHp} ,

s<0 s<0

from where sup,<y, 52 |IVws — V|, < C(T)aQTil for 6y > 0 small enough.

By similar steps as before, starting from the equations satisfied by w?, 5 and w.g,, and not-
ing that these functions and their gradients are bounded in Fy, 7-g, and Fy . (7,,) uniformly
in € > 0, we obtain now

1

t
[Vwgy e — Vwggpellpy < Ce T + Ce’T / (t—s)" vs7 B ds
0

¢ 1
c /0 (t— 8) 7[5, o — wgppallp ds
t 1
c / (t— &) F VG, o0 — Vagguslp s (51)
0

25



Using Proposition 4.6 and Lemma 1.2 we deduce that

l
sup ||Vw50+t Vwgg+illp < C(T )
t<T—0g

From the previous estimates and Proposition 4.6 we deduce that
R 2-1
lw® = wllypr < CeT,

from where (48) follows. Next, we have

Kan*ﬂ?w—u(t,x)\s\f@n*ﬂ?% —fZKan X5 = (e X)Lz

Z KE’FL Z o x)h(TZ’ Xé)]‘{SZTJ} - Kfn * th” (x)

+ \Kgn s« wp™ (z) — K *wy(x)]
(52)
Let L., and M, respectively be a Lipschitz constant for K., and an upper bound for its

sup-norm. Recall that there exists some constant C' such that for n large enough, M., < - en

and L. S . By our choice of (&,), and thanks to Proposition 3.6, the expectation of the
first term can be bounded by

« alnn

exp(Ch | bl oo (65 2)T) < C—

13
L., Ci— <
: VIEL T ||| TnE e

7n

where ||h]|oo = |Jwoll1 +||g|l1,7- On the other hand, independence of the processes (7%, X*n)
implies that the expectation of the second term on the r.h.s is bounded above by

1
2MMWM<CQML

\F Tn2

For the last term, notice that by similar arguments as in the proof Corollary 4.14,

|K., *wi"(x) — K *w(z)| <C||Kg, *wi™ — K, * thWI’Z% + C||K., *wy — K * wt”Wl 2

<0Hw§" - wt\lww + HKen = Klillwel[wr.r

1 2—l
supE<sup £ |Ke, * i (o >—u<t,x>r> sc( e )

z€R? te[0,7T) n 3-

1 1
<CLoT) | =+ =
n:"%  (a lnn) 2
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5 Extension to L! initial condition and force field

In this section, we shall extend the previous results to the case when wy and g(t) belong
only to L'. The bad behavior in L'-norm of the Biot-Savart operator and its derivative
prevents us from working with solutions that are only L' functions. We introduce the
adequate spaces for embedding the mild vortex equation with L' data.

5.1 Analytical framework and results

For p € [1,0] and a measurable function v : R? x [0,7] — R, we define the norms

1-1
o Iollyr = sup {75 vl }

o ol = sup {t" 5wl + 12|V, |
0<t<T
and write respectively Fg o T and Ff o T for the associated Banach spaces.

Remark 5.1 i) If (Hq) holds, then by Lemma 2.2 we have GY xwy € Fy 1,1 ﬂFlﬁpT for
all p, and (t,x) fo {_s * g(s,x)ds belongs to Fy 11N Fpr forp < 2.

ii) Proceeding as in Lemma 4.3, one can check for 4 3 <p<2and > = p <% that
sup [|B° (v, )} 1 < Clloll, 7l
>13 »Willoprm = 0,p,TII%lo,p,7
e>

for all v,u € Fg’p’T and for some constant C > 0. Moreover, the norm of B :
(Fﬁ’p’ )2 — F0 .7 does not depend on T'.

We shall prove below existence of a solution in Fp 17N F 0.p.T for p € [3, ) and arbitrary
T > 0, by an approximation argument by mean of Fg 1 7N Fp p 7 solutions. We follow ideas
of Ben-Artzi [2] who has studied the vortex equation with L! initial condition but without
external field. The following two lemmas will be crucial.

Lemma 5.2 Let I' C LY(R?) be a pre-compact set and T'r C Fo17 a bounded set. Then,
for each p € (1,2) there is an increasing function 0 — 6(0,p,T',T'r), going to 0 with 6 such
that

sup  [[GY 1)+ / "+ p(s)dsll, o < 8(6,p,T,Tr).
Yel',pel'r 0

Proof: Since I' is pre-compact and LP N L! is dense in L', for each € > 0 there is a finite
set I'© C LP N L' such that the L'-balls of radius € and centered in I'® cover I'. Hence, for
each ¢ € T" there exists some ¢ € I'® such that

|G * Yl <[IGY * (0 — ) |lp + |G * ¥l
<C)tr o — vy + [
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by Young’s inequality and the LP estimate for G¥. Writing M (e) = sup ||¢||,, we have
pere

1
sup ||GY 1/;”]%71)’0 < Ce+ 0175M(e),
Ppel

and so the Lh.s term goes to 0 with . Also by Young’s inequality we have ||G}_; *¢(s)|, <

1
suPgery ll¢llo1,r(t — s)» ', from which we obtain the following estimate:

sup || [ GY = ¢(s)ds[l}, o < C(Tr)0.
oel'r 0
The function of 6 defined by

5(6,p,7,Tr) = sup {sup 167« 0l + sup | [ Gy ¢<s>ds|||€,p,9,}
0'<0 | yel’ ¢el'r 0

has the required properties. []

Lemma 5.3 Let I' C L' and I'r C Fy 1.1 respectively be a pre-compact set and a bounded
set, and assume that moreover there is p € [%, 2) such that T' C LP(R?) and 't C Fopr-

For each € > 0, each initial condition ¢ € T' and each external field ¢ € T'p, let ws%® be
the unique solution in Fy 11 N Fy, 1 of the associated mollified mild equation (34).

Then, there exists Ty > 0 such that for all 6 < Ty,

sup  sup w8 o < 25(6,p,T,Tp).
e>0 el ,pel'r

Proof: Consider t < 0 < T and proceed as in Lemma 4.3 44), with r =7’ = p to get

t 1
“Bs(ws,w,¢7ws,w,¢)t||p SC/O (t — 5)*;Hw§,w,¢”§ ds

t
<O(Jus? 0, )? / (t—s) 352 %ds (53)
. 0

1
=Cytr ([ 2§, 4)?, by Lemma 1.1.

Consider the real function fp(s) := Cps* — s + §(6,p,I',I'r). By inequalities (53), Lemma
5.2 and the definition of w®¥?, we have for any 6 < T that fo(||w*¥*?[l0pe) > 0. Moreover

0 < for([lw¥?loper) < follw™ "o per) for all ¢ <6 <T (54)
since 0(+,p, ', T'p) is increasing.
Let Ty be such that §(Ty, p, T, I'7) < ﬁ and 0 € (0,Tp] . Then, 6(0,p,I,I'1) < ﬁ and

fo has two positive real roots, say 0 < s1(f) < s2(6), and it is strictly negative in between.
Notice that from the fact that w*¥¢ € Fy,, r, the function ' — ”]wsﬂ/’"z’mg p.¢ IS continuous

and goes to 0 when 6/ — 0. Hence, from (54) we must have \][wa’w’¢|||gp9/ < 51(6) for all
0’ < 6. In particular,

1—+/1—-4C,(0,p,T,T'r)
2C,

w21, 5 < s1(0) = <26(0,I,I').

il

Following arguments of Ben-Artzi [2] and Brezis [5], we deduce uniqueness for L' data wy
and g, with help of the previous lemmas, and under an additional continuity assumption.
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2) and

Proposition 5.4 Let wg and g satisfy assumption (Hy). Then, for each p € [3,
Lr).

4
3
e >0, equation (34) has at most one solution in the space C([0,T],L') N C(]0,T],

Proof: We prove it for e = 0, the case € > 0 being done identically. Let w € C([0,7], L')N
C(]0,T], LP) be a mild solution. Recall that, by definition,

/[0 TR |(K * ws)(z)||ws(z)|dx ds < oo.
4 X

Then, the shifted function w,4.(-) € C([0,7 — 7],L') N C([0,T — r], L?) solves the mild
vortex equation with initial condition w, and external field g,.(-). Since w € C([0,7T], L"),
the set
— c 7l
F . {wr}TE[O,%} h— L

is pre-compact. On the other hand,

Lryo = {grs.(-) : [0,7/2] x R* = R},ep0.1/2)

is bounded in F{j, r. By Lemma 5.3, there is an increasing function that we denote by 6(0)
b 72
for short, which does not depend on r € [0,7/2], goes to 0 with 6, and satisfies

1
£ el < 6(6)
for small enough 6 and all ¢t € (0,6]. Letting » — 0, we deduce that

_1
sup 7 |wl, < 6(6).
t€[0,0]

Let w’ be a second solution and define §'(#) analogously. Proceeding as in Lemma 5.3, we
deduce that

o = w5 < C(OO) + &' (O — w'l,

and so Jw — w' |||(ﬁ)’p9 = 0 for small enough 6 > 0. Hence, w) and wze) solve the mild
equation in Fy , r_g with same data w(€) and g(6+-). We conclude from Theorem 4.7 that
w=w'1in [0,T].

[

In view of the previous result, and in order to have a complete (existence and uniqueness)
statement for the mild equation with L! data, we will slightly strengthen hypothesis (Hy),
assuming

(HY):
e wy € L'(R?) and
e g€ C([0,T], L' (R?)).
Next lemma will allow us to construct mild solutions with the required continuity property.

Lemma 5.5 Assume (H}) and (Hp) with p € [3,2). Then, for each e > 0 the unique

solution w® € Fy 11 N Fopr of the mild equation (34) belongs to C([0,T], LP N L*)
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Proof: First notice that if % <p<2and 42%;) <p < 2’%}), we have for any € > 0 that

tAL 12
’07P7T)/ st P [Hut—s — Uy _sllp
0

Tl — vt/snp] s

1B° (v, u)e = B (v, u) ||y <C ([[vllopr + [lul

142

12
P (tnt) Y

pL

2
+ C (Ivllopr + Nullopr)” [(EVE)

and the right hand side goes to 0 when ¢ — ¢’ by dominated convergence for v,w €
C([0,T], LP). This and Lemma 4.3 imply the continuity of the operators

B°: (C([0,T], 7))* — (C([0,T], L7)).

On the other hand, by Young’s inequality we have for r € [1, p]

t t
H/ Gi_g * gsds — Gj_s*gs ds
0 0

tAL
1_q
< / sr ”gt—s - gt/fs”l ds
0
'

(2% 4 1
+/ s7 |lgvery—sll ds,
AL

and so from continuity of s — g5 € L' we deduce that Wy € C([0,T], L").
Proceeding as in Section 3.4 (using Lemma 4.11 and Proposition 4.12) we deduce a local
existence statement for (34) in the space C([0,7], LP). From uniqueness in Fy, 7 for the
equation satisfied by w®(6 + -) we conclude that w® € C(]0,T], LP).
Finally, repeating the arguments of Theorem 4.7 in the spaces C([0,T], L") yields that
w® € C([0,T), LY).

[

Now we can prove

Theorem 5.6 Let p € [%, 2) be fized and wy and g be functions satisfying (HY).

a) For each € > 0, there exists a unique solution w® to the mild vortex equations (34) in
the space

o([o, 71, L") n (o, 7], LP).
This solution also belongs to C([0,T), L*) N C(]0,T], L%).

In particular, for e = 0 there exists under (H}) a global solution w = w° to the mild
equation (7).

Moreover, we have
sup H|w‘€]”g g — 0 when 6 — 0.
520 Ps

b) For allt €]0,T), we have wi — wy in LP, and the following estimate holds:

2
sup (t%Hth — thp) < C(p,T)an.
te[0,7
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Proof: Let w? and g" be sequences respectively in L' N L? and in C([0,T], L' N LP), and
such that wf — wp in L' and ¢" — g in C([0,T], L') when n — co. Observe that

I'={wg} and I'r = {¢"}
satisfy the hypothesis of Lemma 5.3. For each € > 0 and n € N we denote by w*" € Fy , 1
the solution of the mild equation with data w{ and g".

We split the proof of a) in several parts. Uniqueness has already been proved in Proposition
5.4.

Convergence of w*" to a mild solution w® € ngT
Using standard LP estimates for G} x wy and GY_, * g7, and similar arguments as those in
(53), we check that

1_ 1
g™ = w™ | < Ctv ™l = wi'lh + Ctellg™ = g™ o7

1 n m
+ Ot (™" = w0
for all ¢ € [0,0]. Thanks to Lemma 5.3, for 6 small enough we have for all n,m € N

™™ — w ™ o <Cluf il + CThg™ ~ "o r

+C8(8,p, T, T Jlus™ — o™,

(the constants are independent of €, n and m). Therefore, for each ¢ > 0, the sequence
w®™ is Cauchy in the space F&p’T if 6 is small enough.
Next, from the mild equation satisfied by the function wy?" (-) we deduce that

lwyy — watyllp <Cllw™(8) —w™ (@), + C(T)lg"™ — g™ o7
t
+ () /0 [l — WS pds

for all ¢ €]0,T). It follows that {wy" },en is Cauchy in the space Fyp g, and consequently
{w®™},en converges in F§7p7T for each € > 0. We denote by w® the limit in Fg}va, and set
w = uw’.

Using continuity of B¢ in the space F&p;,, (cf. Remark 5.1 4) with p = p’) we easily check
for each ¢ > 0 that w® is a solution of the mild vortex equation (34).

Continuity of ¢t — w{ € L' N LP on 0,7

By Lemma 5.5, t — wgft is a continuous LP-valued function on [0,7 — ] for each n and
0 € (0,T] . This clearly implies that w® € C(]0,T1], LP).

To prove that w® € C(]0,T], L), we notice that by similar arguments as in Lemma 5.5, we
can establish that B° : (F&T,T NnC(o,T),L"))? — F&MT NC(]0,T], L") is continuous when
3 <r<p, 2 <1 <5 Indeed, we have for all ¢,#' €]0,T] that

f p ZA -
B+ Il ) [ 57—

1B° (v, w)e = B (v, u)y [l <C (Illv\

2 11 11
+C (Il + lull ) [(EV )7~ = A E)77,
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which together with Lebesgue’s theorem yields the asserted continuity property. On the
other hand, it is not hard to check that Wy € C(]0,T], L") for all r € [1, p], from where by
a standard argument (see the proof of Theorem 4.7) it follows that w® € C(]0,T], L').

Behavior at 6 =0 of |w® |||gp 0
JFrom Remark 5.1, i) we deduce for each % <r<p, 42%7, <71’ < 3%, and § < T that

Il v o < IWoll§ o g + Crr (Beo® NG )

for a constant C,,» not depending on ¢ > 0. By Lemma 5.2, if furthermore r’ # 1, we
obtain for small enough 6 > 0 that

oW < 687" 0.Tr) o+ Crr (eI ) (55)
Taking r = v’ = p and proceeding as in the proof of Lemma 5.3, we conclude that

Sup lwellf 6 < 20(6.p,T,T7) (56)
e>

for small enough 6.

Continuity of ¢t — w®(t) € L' in t =0

We now prove that w§ — wp in L' when t — 0. Notice that by (55), if ||w® |||g 9 — 0 when
6 — 0, then also ||w® |||g .9 — 0. Thus, by an iterative argument using (55), starting from

(56) and suitably choosing consequent values of r and /, we deduce that |Jw — 0.

et
I
Taking in Remark 5.1 ) p’ = 1 and the value % in place of p yields

[[w®(t) — wollx < |Gy + wo — wollx +¢]lg]

orr+C(lwel s )

Making t — 0 we conclude the asserted convergence.

Finally, it is clear by interpolation that a solution in C ([0, T], L)NC(]0, T], L?) also belongs
to C([0,7],L') N C(J0,T], L)

b) Notice that
sup [Jwe[lf 5 7 < oo. (57)
e>0

This follows by using once Remark 5.1 i) (with p’ = 2) if p € (%, 2), and using it twice
(with some p’ € (%, 2) and then with p” = 2) if p = 5. Consequently, taking in Lemma 4.5

_ . 3 . . . 1 1 1
[ = p and using Young’s inequality we obtain, for 1= 5 2 that

o~

1 2-p
[Ke * wg — K xwlly < [[Ke — Kllpllwi]ls < Cs72e 7 (58)

for a constant not depending on € > 0.
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By standard estimates and the previous considerations together with (56), we deduce that
fort <6

¢ _1
Jwi — wellp SC/O (t —s) 7llwg — wsllp ([[willp + [Jwsllp) ds
t _1
+C/O (t—s) 7| Kexws — K * wsllq (Jwgllp + [lwsllp) ds
t 11,
<C30.p.TTr) [ (6= 555wt = s
0
_ t
+05(e,p,r,rT)52pp/ (t—5) psCDTG g
0
_1 1 2-p _1
<C3(0.p.T. )% sup (sHus = willy) +Co(0,p,T,Tr)e 702,

s€[0,0]

1

In the last step we used that fot(t - s)fésp 2 ds = B(6, O)tfé. Therefore,

i

Ly e 1, ¢ 2-p
sup (£3]|uwf = will,) < C3(0,p,T,Tr) | sup (t3|wf —willy) +2 7
t€[0,6] t€[0,0]

and so for some small enough 6 > 0 we have

1 2-p
sup (ﬁ”wf —wt||p) < O5(0)e 7.
te[0,0]

Using this L estimate for wg — wy, the mild equations satisfied by wj, and wyy., and
similar arguments as in Proposition 4.6, we deduce that

2—-p
. — worllopz—o < Ce7".

The two previous estimates prove b).

We provide now additional regularity properties.

Theorem 5.7 Under assumption (H}), for each p € [3,2) we have

sup [Jw} , 7 < o0
e>0

Proof: The proof is similar as in the case of L' N LP data, with help of a local existence
result. There are however important differences.

First, we need to slightly modify some lines of Proposition 4.12, since the estimates estimates
valid under (Hp) do no longer hold. For data wy € LP and g € F, T > 0, we have by
Holder’s inequality the estimate

~ AL
IWoll, 7 < C') (Ilollp + 71l 1 7)

1,1

(with the obvious meaning of Wp) for some constant C’(p) > 0. From this and from Lemma
4.11, we deduce that a solution w*® € Fj,¢ to the mild vortex equation exists, as soon as
0 € (0,7 satisfies

1-1 N A1
0" (lollp + T2 Wglly, ) < My (59)

33



for certain constant )\;, > 0 independent of € > 0. This local solution w* satisfies

A1
Vi lpo < 20'() (ol + T7 1ally 1) - (60)

Recall now that for each r > 0 the function w®(r + -) solves on [0,7 — r] the mild equation
with data Wy = w; and § = g,4.. Since now w® ¢ Fy , 7, we cannot expect (59) to hold for
some # > 0 uniformly in the initial conditions wy = w§ , r € [0,T]. Nevertheless, Theorem

1
5.6 a) implies that sup.> 0! |lwg|lp — 0 when — 0, so that there is 8y > 0 small enough
such that for all 6 €]0, 6],

1—1 1
supd' > (|[wplly + 77 ghor) < .
e>0

Consequently, by the previous existence argument there is a solution w® € Fj g for the
data wo = wy and g = gg4. to the same equation satisfied by wg, in Fypr—g. Using
uniqueness in Fy j, gn(r—g) and estimate (60), we deduce that

1
s Ol o < 20°) (Il + T lgllonr)
It follows that for each s € [0, 6]
1 1
s2[|[Vwpyslly < Cllwpllp + T llgllo,,r)
with a constant C' not depending on ¢ > 0. This yields for any 6 € (0, 6]
3_1 1—-1 1
02 #||[Vuwpll, <C(0/2) 7(0/2)2|Vwy gi62llp
1—1 1
<C(0/2)" 7 (lwgsollp + T7 lgllo.r.7)
<Clwrllf .+ Tlgllo.1.7)-

We deduce that sup.s H]wsmg o < OO
To obtain an upper bound in the whole interval [0, T, notice that for any r € [0y/2,T] and
0 > 0, we have

1—1
1—1 20 P 1—1
o 3t < (5) 7 (suplerlf ) < o,
0 >0
Therefore, there exists #; > 0 such that for all r € [0y/2, T
17% 15 1 /
supd) " (il + Tolighosr) < Ay,
e>0
We deduce as before, that for all such r it holds

Ffs. () oar).-

We can now proceed as in the last part of the proof of Theorem 4.13 i) (i.e. by suitably
splitting the interval [#/2,T] and applying the previous local estimate), and conclude that

1
1o < 2C"(0) (Ilwglly + T7llg

sup ”’w§/2+-(')ml,p,T—9/2 < 0.
e>0
This fact achieves the proof.

By similar arguments as in Corollary 4.14 i), we deduce the proof of
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Corollary 5.8 Assume that (H}) holds and let w® with € > 0 be the unique solution to
the mild equation (34) in C([0,T],L') N C(]0,T], LP), p € [3,2) given by Theorem 5.6. We
have

3 1
sup sup {¢277 (|| Kz + wflloo + [z #wf]| o2 ) } < o0,
>0 t€[0,T] cr

5.2 The nonlinear process and particle approximations

We now proceed to prove, under assumption (Hj), convergence of the mollified nonlinear
processes, and existence and uniqueness for the nonlinear martingale problem (MP).

Definition 5.9 For p € [%,2), we denote by P;LT the space of probability measures on
Cr = [0,T] x C([0,T],R?) such that for eacht € [0,T)], the signed measure P; has a density

pr with respect to the Lebesgue measure and p € C([0,T], LY) N C(]0,T], LP) N ngT.
Theorem 5.10 Assume (HY).

a) For each p € [%, 2), there exists in the class PIQ’T a unique solution P to the nonlin-
ear martingale problem (MP). The corresponding function p is equal to the unique
solution w € C([0,T],L') N C(]0,T], LP) N ngT of the mild equation (7).

b) The solution P € P;/),T is the limit in law when € — 0 of the laws P- of the mollified
processes (X°).

Proof: We proceed in several steps.
Uniqueness. Let P € PI’JT be a solution of (MP). Since % <p<?2for f:R? - R

. . . 4 4
the interpolation inequality ||f||3 < ||f|l1 + |l FII5 holds (cf. |f]3 < ’f‘1|f|§1 + |f]p1|f|>1).
3
Taking f = tp; and multiplying by ¢!, we deduce that j € F g 4 - Therefore, as for (41),

1§’
we obtain

/ | K ()| o (x)|dxdt < oo.

[0,T]xRR2

Also by standard arguments we deduce that p is a mild solution of (7) in the space

C([0,7],L") N C(0,T], L3) N F , ;.
737

associated functions ' and jp? are equal by Theorem 5.6. We set w = % = p'.
Let us now define a family (Pti)te[o,T] of sub-probability measures P} on R? by

Consequently, if P! and P? are two solutions, the

| J@P(d) = B (f(X)Lir<p) (61)

with (7, X) the canonical process. Notice that the drift coefficient is not bounded, so it is
not immediate whether each P} has a density. Denote by D,,, n € N\{0} the shift operator
defined in the canonical space [0, 7] x C([0,T],R?) by

n n

Do X)) = (7= 1)Koy )
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Under the laws Q% := P'o D!, i = 1,2, the canonical variable (1, Xo) has law P1 given
by

/ F(t,) Pi(dt, dz) —=E"" (f((T - 1>+,X1>)
R2x[0,7—1] n n n
T 1 ~ .
_ / Ft— S a)po(dt.de) + [ F(0,2) P (dx).
% R2 n R2 n

Then, under Q¢ , the canonical process (7, X) solves the martingale problem

e Qo(r,Xo) =P
o J(X0) = [, Xo) = [y [ 905, X0) H VDS (5, X) + K w1 (X)V (5, X)| ozrds,

0<t<T— %, is a continuous Q-martingale for all f € C; w.r.t. the filtration G; = F, 41
Notice that we cannot ensure by the moment that the ”initial condition ” Q¢ o (7, Xo) ! is
uniquely determined. On the other hand, if that fact is established, we deduce that (MP)
has a unique solution as follows. First, we remark that the drift coefficient K * w, 1 is
bounded by Corollary 5.8. Then, we can adapt standard results on martingale problemg to
deduce that P'o D, 1 = P20 D, ! for all n € N. Since both probability measures converge
as n — 00, respectively to P! and P2, this is enough to conclude that P! = P2,

So we proceed to check that P} = P%, which by (61) is equivalent to P! = P2 First we

n

prove that these two probablhty measures on R? have densities, or more generally, that
Pt ,© = 1,2 have densities for each ¢ > 0.

Observe that for ¢ > 0 the indicator function in the definition (61) can be replaced by that
of the event {r < t}. Thus, it is not hard to check that for ¢ > % it holds that

[ H@Pitdn) = B (X, )1y (63)

On the other hand, since K'xw_, 1 is bounded, by a standard argument based on Girsanov’s

theorem we can check that @, is absolutely continuous (on [0,7 — 1] x C([0,T — 1], R?))

n

w.r.t. the law of the process (7, Xy + fg 1s>,dBs), where (7, Xo) has distribution P! and

n

B is an independent Brownian motion. From this and (63) it follows that Pi(dx) has a
density (independently of whether PZ does or not). Hence, Pt has a density for all ¢.

We denote the density of PZ by pt. We just have to prove that p} = p2.
Following similar arguments as in the proof of Lemma 3.9 ii), and using the fact that

T
/ K wi(2)| () dar dt < / 1K % wysodt < o
[0,T] xR2 0

by Corollary 5.8, we deduce that
i) = G = anfe) + [ G xgue) ds+ [ VGEx (K rwpl] () ds
0
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_ |wo ()] _ lgs ()]
lwoll1+gll, 7 lwolli+llgllh,7

and use the estimate || K. * w(s)p41 < Cs™1 (following from Corollary 5.8) to get that

for all ¢t € [0,T], where wq(z) and gs(x) . We take L3 norm

t
I5ils < Ct7i +C + C/ (t—s) 95 ids=Ct 5 +C +Ct 2.
0

Consequently, we have sup;c(o 7] (t% (Al %) < 00, and then, by similar steps as in the proof
of Theorem 5.6 b), we obtain

1. N 1. A
sup (£33} = p3ll ) < 05(6) sup (36} — 7l )
t€[0,0] 3 te[0,0] 3
for small enough 6, and §(f) a function associated to w as in Theorem 5.6 a), satisfying
thus 6(0) — 0 when § — 0. We conclude that p; = p? for small enough ¢, and then for all
t by looking at the equations satisfied by p¢ N t(x) in Fj 4 _1. Uniqueness is proved.
n 1304 T

Estimates for time-marginal laws of P¢
Consider ¢ > 0 and let p° be the weighted density associated with the law P® of the
mollified process X¢, and p° be the density of f — E(f(X{)1{;<4). For an arbitrary
p € [%,2), we take the LP norm in the mild equations satisfied by p°. From the fact
that supyepo 7 [|(Ke * pf)pgll1 < C(e) < oo, and using Lemma 2.2 together with Young’s
inequality, we deduce that

sup "7 |7 < oo.

t€[0,T7]

Similarly, starting from the mild equation satisfied by /¢,

t t
ila) = Gl x o) + [ GEvga) ds [ VGL (kg (@) s, (61)
0 0
and since sup,¢(o 71 [|(Kz * p7)pi[l1 < C'(€) < oo, we deduce that

1-1, .
sup 77| 5|, < oo.
te[0,T7]

By standard arguments, the function p°(t +-) € Fp 77—+ solves the mollified mild equation
with data satisfying (H}) and (Hp). From Lemma 5.5 we deduce that 5° € C([0,T], L') N
C(]0,TY], LP) and therefore, by Theorem 5.6, p° equals the unique solution w® given therein.
In particular, if we define

~ 1—-1
6(0) == sup sup t° »||pf|lp,
>0 t€0,0]

then 6 (0) converges to 0 when 6 tends to 0. Moreover, taking LP norm in (64) and using
Remark 5.1 we get B 3
1605 5.0 < IWoll 0 + COONFNG 10

with W defined in the natural way in terms of wg anf g. It follows that

11 0 < 2070l 5, "
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for 6o > 0 small enough. Since sup,>g [|55,,.(")llop -0, < 00 by Theorem 5.6, by looking
at the mild equations satisfied by the functions ;350 +.» € >0, which have initial conditions
Pg, (x) that are bounded in LP uniformly in € by (65), we conclude that

1515, < 0.

(This estimate will be used below in the particular case p = %)

Tightness of the family (P.): From Corollary 5.8, if 0 < n < 1 and S, R are stopping
times in the filtration of (7, X¢) such that S < R < T and R — S < 7, we have

R 1_1
[ e X it < O
S

for a constant C' > 0 independent of € > 0. Tightness follows from Aldous criterion (p < 2).

Identification of accumulation points as solutions of (MP)

Let P be an accumulation point. By suitably approximating the function i by continuous
functions (cf. [12]), one can check that [p, ¢(2)pf(z)dz = E(Y(XF)h(T, X0)1g>,y) con-
verges to BT (1(X3)h(r, X0)1{>r1) when ¢ tends to 0 for every ¢ € D. Consequently, since
p° = w®, we have by Theorem 5.6 b) that

P,(dz) = wy(z)dz,

with w the unique solution of the mild vortex equation in C([0,77],L') N C(]0, T}, L).
Let us take f EC;’Q, 0<s1<--<sp,<s<t<Tand A:[0,T] x R2™ — R a continuous
bounded function. To show that P is a solution of (MP), it is enough to prove that

t
EPK/ {Z‘f(ﬁ Xp) +vAf(r, Xy) +K*wr(Xr)Vf(r7Xr)} 1o pydr

10X = (5.0 ) XM X X)) | =00 (69
with (7, X) being the canonical process. Define a function « : [0, T] x C([0, T],R?) — R by
t 8f
0.6 = ([ { G0N+ AT 601 + K €TI0 60D } 1y

#F0E0) = £(5,606) ) X ABL&ls2) o€ (). (67
Thanks to Corollary 5.8, x is continuous and bounded, and consequently,

EF (k(r, X)) = lim E(k(1,X%))

for PZ" the subsequence converging to P. We conclude by showing that this limit is 0.
From the martingale problem satisfied by P we deduce that

T
E(k(r, XE’))‘ <CE UO ’K w5 (XE) = K % wS(XSI)‘ 1{S>T}ds]

T
so//
0 R2

T
<C [ (1o = Kowwll [ Ko s, = K <) 16°(5) ]y ds
i (

Ko % 5 (2) — K xwy(x)| p°5 (z)da ds
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by Holder’s inequality. By Lemma 4.1 with p = % and ¢ = 4, Young’s inequality and
Lemma 4.5 with [ = %, the latter is bounded above by

T
! L)
C'sup ||p° H\o4T/ §4 [Hpi — wsl[s + !\K—stlléllws!\z} ds
>0 137 0 3 3

T
1 ~c!
<C [ 1 — wnly + 1 = Kol ] ds
0

the last inequality owing to (58) and to Theorem 5.6 b). Thus, we have

(ST

e’ / T -1 _1 1,1
E(s(r, X ))]SC(s) S 2ds = CTi()?

which tends to 0. This concludes the proof.

il

We finally deduce the following approximation results in the L' setting.

Corollary 5.11 Let T > 0 and assume that (HY) holds. Consider a sequence €, — 0 and
the system of particles (Zm)neN,z‘:l...n defined as in Corollary 4.17.

Letp € [%, 2) and P € P', 1 be the law of the nonlinear processes associated with the unique
solution w € C([0,T], L*) N C(]0,T], LP) of the vortex equation. Then, for each k € N,

law(Z™, ..., Z") = P®*  when n — cc.

Proposition 5.12 Assume that (HY) holds, and recall that u(t,x) = K % w¢(x). Let the
weighted empirical process fis™" and the sequence e, be defined as in Corollary 4.18. Then,
the sequence

sup E(|K., * i (z) — u(t,z)]) — 0
r€R?

for all fixed t €]0,T], as n tends to infinity, from which we deduce that

T

/ sup E(|K:, * 4" () — u(t, z)|)dt — 0.
0 =z€R2?

Proof: We essentially follow the proof of Corollary 4.18, in which the continuity of the

bilinear operator B in the spaces Fy . (7, is needed. Under the weaker assumption (H)),

our solution only belongs to Flﬁyva (see Theorem 5.7), and in this setting we are not able
to extend the continuity properties of B to a space analogous to Fy ;. (7,p)-

We thus consider the family of shifted solutions {w}, }.>¢ for  €]0,T]. By similar compu-
tations as in (50) we obtain that

2—p
P

Lpr < O, T)e*T +C'(r, T)r 2e 7,

I

where the second term in the r.h.s. is due to the difference of the initial conditions in the
shifted versions of 49, controlled by Theorem 5.6 b).

From this we deduce that the third term on the r.h.s. of (52) goes to 0 for each fixed t €]0,T'.
As in the proof of Corollary 4.18, the expectations of the two other terms are bounded and
go to 0 uniformly in € R? and ¢ € [0,7]. This yields the first convergence result. To apply
the dominated convergence theorem we use moreover the fact that || K xw§||oo < C||w§||yy1.
and Theorem 5.7.

il
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6 Numerical results

We consider data wg and g satisfying the second moment conditions [g» |2|?|wo(z)|dz < +o0
and fOT Jge [22]g(s, z)|dz ds < +oo. Taking ¢(s,z) =1 and ¢(s,z) = |z|* in Equation (6),
and using the fact that div K *xw(s,z) = 0 for the associated solution w, we can check that

for all ¢ € [0, 7],
¢
/ wy(z)dx —/ wo(x)dx+/ / gs(x)dx ds,
R2 R2 0 JR2

and
t t
/|x!2wt(x)da::/ \x!zwo(ar)da:—i—// |22 gs(2)dx ds—|—4u// wg(x)dzds.
R2 R2 0 JR? 0 JR2

The two previous quantities are respectively called "total flux of vorticity” (TFV) and
"moment of fluid impulse” (MFTI).

For the simulations, we take an initial condition wy equal to the density of the centered
normal distribution on R?, with given variance mg = 2, and g(s, z) := ywo(z) with v # 0 a
constant to be fixed. Thus, we have |Jwo||1 + ||g]|1,7 = 1+ |y|T. Notice also that Equation
(6) implies that the ”barycenter” is null: [po zjwy(x)de = [g2 zjwo(x)da = 0 for i = 1,2.

Let us now consider the equi-spaced partition {tk}gzo of [0,7] in N subintervals. Through
simple computations using (8) we obtain for k =1,..., N that

1 VT

=——— ; P(r€ltp_q,te]) =

Pr=o NG+ i)

and
P(X() € d.’L“T = 0) = P(X() S da;‘r G}tk,htk]) = wo(.%')dl'.

Moreover, we have

h(0,z) = 1+ |y|T and h(t,x) = sign(y)(1 + |y|T) for ¢t €]0,T.

Taking as parameter p = P(7 = 0), we have: |vy| = %, P(t €ltp_1,tk]) = (1;[1;)’ h(0,x) =
% and h(t,z) = sz’gn(ﬁy)% for t €]0,T]. Hence we obtain

/R wilw)dr =1+ sign(y) <1_p> ‘)

pT

and

m(t) == /Rz 2wy (2)dz = 2 + <28ign('y) <1p_Tp> 4 4y> t + 2usign(7) <1p_Tp> 2.

We compute these two quantities at each time ¢, using the particle vortex method. Choosing

sign(y) = —1, we simulate the Euler scheme of the trajectory of each particle Xti’n =
(XZ:?, XZ;L) defined in (18). We thus obtain the data (X;", XZ,Z}Q){lgign;lngN}-

The empirical values of TFV and MFI will be given by
N oy (Lo — L)
pn = {tr=r 3\ =0} {ri#0}
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TFV and empirical TFV Empirical barycenter (1st coord)
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Figure 1: e = 1074, v =5 x 1077, n = 6000, T = 50, At = 0.8,p = %,sign('y) =-1
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Figure 2: e =107%, v =5 x 107", n = 6000,T = 50, At = 0.8,p = %, sign(y) = —1

and
n

M (ty) = pln UK P+ X sy (L ricoy — Lirizoy)-
i=1

Notice that the Total Flux of Vorticity does not depend on particles positions, but only
on the number of vortices "alive” at each time and on their ”sign” . Therefore, the first
graphic in Figure 1. illustrates the law of large numbers for the random time birth 7. The
second graphic in Figure 1. illustrates the fact that the barycenter is null.

Figure 2. shows the theoretical and empirical Moment of Fluid Impulse and the relative
error, computed as W Let us remark that the probabilistic vortex approach is
robust for very small viscosities.
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ign(y) = —1

, Stgn
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99, m(t)= -1,9792
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5x 1077, n=1000, T =100, At=1, p

70, m(t)= -0.8095
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In Figure 3. we show the time evolution of the velocity field in a regular grid. At time
t = 0 all vortices have positive sign, and then new vortices with negative signs randomly
appear. Observe that at each point the norm of the velocity field progressively decreases,
attains 0 and then increases, while its direction is progressively reversed.

Acknowledgements: We thank Chi Viet Tran and Jaime San Martin for some helpful
suggestions about the numerical simulations.
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